Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985364503> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1985364503 abstract "For climatological, hydrological, and snow hazard investigations, the areas covered by snow and snow water equivalence are important parameters. MODIS sub-pixel snow cover algorithm applies the traditional methods based on the binary concept — a pixel is either classified as snow or non-snow. Large error is expected when using moderate to coarse resolution imagery to map snow covered areas at a regional scale. One of the objectives of this study is to develop an automatic snow mapping algorithm at sub-pixel resolution for MODIS. We improved the inversion of sub-pixel snow cover based on MESMA (Multiple Endmember Spectral Analysis) by selecting optimal endmembers. Although the original MESMA has a clear physical meaning and high precision, it is difficult to calculate efficiently at large area. Therefore, in order to calculate automatically snow fraction from MODIS, it is necessary to improve the method of unsupervised endmember selection to enhance the computational efficiency of MESMA. The new improved estimation of MODIS subpixel snow cover based on MESMA improved the accuracy, in contrast to MODIS/NASA standard snow cover product. Secondly, a new semi-empirical snow depth algorithm has been developed under AMSR-E and FY3/MWRI by incorporating land cover fraction, based on 7-year (2002–2009) observations of brightness temperature by AMSR-E and snow depth from Chinese meteorological stations. When its land cover fraction is larger than 85%, we regard a pixel as pure at the satellite passive microwave remote-sensing scale. A 1-km resolution land use/land cover (LULC) map from the Data Center for Resources and Environmental Sciences, Chinese Academy of Sciences, is used to determine fractions of four main land cover types (grass, farmland, bare soil, and forest). Land cover sensitivity snow depth retrieval algorithms are initially developed using AMSR-E brightness temperature data. Each grid-cell snow depth was estimated as the sum of snow depths from each land cover algorithm weighted by percentages of land cover types within each grid cell. Through evaluation of this algorithm using station measurements from 2006, the root mean square error (RMSE) of snow depth retrieval is about 5.6 cm. In forest regions, snow depth is underestimated relative to ground observation, because stem volume and canopy closure are ignored in current algorithms. In addition, comparison between snow cover derived from AMSR-E and FY3B-MWRI with Moderate-resolution Imaging Spectroradiometer (MODIS) snow cover products (MYD10C1) in January 2010 showed that algorithm accuracy in snow cover monitoring can reach 84%. Additionally, a physically-based inversion technique is developed to estimate snow water equivalence (SWE) under AMSR-E in this work. The ground surface emission signals at 18.7 GHz and 36.5 GHz were highly correlated regardless of the ground surface properties (dielectric and roughness properties) through numerical simulations by AIEM. This provides a new technique that separates snowpack and ground surface emission signals. With the parameterized snow emission model from a simulated database that was derived using a multi-scattering microwave emission model (DMRT-AIEM-MD) over dry snow covers, we developed an algorithm to estimate SWE using the microwave radiometer measurements. Evaluations on this technique using both the model simulated data and the field experimental data with the airborne Polarimetric Scanning Radiometer (PSR) data from NASA Cold Land Processes Experiment 2003 (CLPX03) showed the promising results, with the root mean square error of 32.8mm and 31.85mm, respectively. This newly developed inversion method has the advantages over the AMSR-E SWE baseline algorithm when applied to high resolution airborne observations." @default.
- W1985364503 created "2016-06-24" @default.
- W1985364503 creator A5006636279 @default.
- W1985364503 creator A5033634734 @default.
- W1985364503 creator A5056336938 @default.
- W1985364503 creator A5067341117 @default.
- W1985364503 date "2014-08-01" @default.
- W1985364503 modified "2023-09-23" @default.
- W1985364503 title "Remote sensing of snow in China" @default.
- W1985364503 doi "https://doi.org/10.1109/ursigass.2014.6929590" @default.
- W1985364503 hasPublicationYear "2014" @default.
- W1985364503 type Work @default.
- W1985364503 sameAs 1985364503 @default.
- W1985364503 citedByCount "0" @default.
- W1985364503 crossrefType "proceedings-article" @default.
- W1985364503 hasAuthorship W1985364503A5006636279 @default.
- W1985364503 hasAuthorship W1985364503A5033634734 @default.
- W1985364503 hasAuthorship W1985364503A5056336938 @default.
- W1985364503 hasAuthorship W1985364503A5067341117 @default.
- W1985364503 hasConcept C120665830 @default.
- W1985364503 hasConcept C121332964 @default.
- W1985364503 hasConcept C125245961 @default.
- W1985364503 hasConcept C127313418 @default.
- W1985364503 hasConcept C127413603 @default.
- W1985364503 hasConcept C146978453 @default.
- W1985364503 hasConcept C147176958 @default.
- W1985364503 hasConcept C153294291 @default.
- W1985364503 hasConcept C154945302 @default.
- W1985364503 hasConcept C159078339 @default.
- W1985364503 hasConcept C160633673 @default.
- W1985364503 hasConcept C19269812 @default.
- W1985364503 hasConcept C197046000 @default.
- W1985364503 hasConcept C205372480 @default.
- W1985364503 hasConcept C205649164 @default.
- W1985364503 hasConcept C2777007095 @default.
- W1985364503 hasConcept C2778755073 @default.
- W1985364503 hasConcept C2780648208 @default.
- W1985364503 hasConcept C39432304 @default.
- W1985364503 hasConcept C41008148 @default.
- W1985364503 hasConcept C4792198 @default.
- W1985364503 hasConcept C53802167 @default.
- W1985364503 hasConcept C58237817 @default.
- W1985364503 hasConcept C58640448 @default.
- W1985364503 hasConcept C62649853 @default.
- W1985364503 hasConceptScore W1985364503C120665830 @default.
- W1985364503 hasConceptScore W1985364503C121332964 @default.
- W1985364503 hasConceptScore W1985364503C125245961 @default.
- W1985364503 hasConceptScore W1985364503C127313418 @default.
- W1985364503 hasConceptScore W1985364503C127413603 @default.
- W1985364503 hasConceptScore W1985364503C146978453 @default.
- W1985364503 hasConceptScore W1985364503C147176958 @default.
- W1985364503 hasConceptScore W1985364503C153294291 @default.
- W1985364503 hasConceptScore W1985364503C154945302 @default.
- W1985364503 hasConceptScore W1985364503C159078339 @default.
- W1985364503 hasConceptScore W1985364503C160633673 @default.
- W1985364503 hasConceptScore W1985364503C19269812 @default.
- W1985364503 hasConceptScore W1985364503C197046000 @default.
- W1985364503 hasConceptScore W1985364503C205372480 @default.
- W1985364503 hasConceptScore W1985364503C205649164 @default.
- W1985364503 hasConceptScore W1985364503C2777007095 @default.
- W1985364503 hasConceptScore W1985364503C2778755073 @default.
- W1985364503 hasConceptScore W1985364503C2780648208 @default.
- W1985364503 hasConceptScore W1985364503C39432304 @default.
- W1985364503 hasConceptScore W1985364503C41008148 @default.
- W1985364503 hasConceptScore W1985364503C4792198 @default.
- W1985364503 hasConceptScore W1985364503C53802167 @default.
- W1985364503 hasConceptScore W1985364503C58237817 @default.
- W1985364503 hasConceptScore W1985364503C58640448 @default.
- W1985364503 hasConceptScore W1985364503C62649853 @default.
- W1985364503 hasLocation W19853645031 @default.
- W1985364503 hasOpenAccess W1985364503 @default.
- W1985364503 hasPrimaryLocation W19853645031 @default.
- W1985364503 hasRelatedWork W1971520707 @default.
- W1985364503 hasRelatedWork W1972015874 @default.
- W1985364503 hasRelatedWork W1978524803 @default.
- W1985364503 hasRelatedWork W1993131138 @default.
- W1985364503 hasRelatedWork W2006726392 @default.
- W1985364503 hasRelatedWork W2047228190 @default.
- W1985364503 hasRelatedWork W2116600937 @default.
- W1985364503 hasRelatedWork W2155880082 @default.
- W1985364503 hasRelatedWork W2163803366 @default.
- W1985364503 hasRelatedWork W2265573996 @default.
- W1985364503 hasRelatedWork W2292249922 @default.
- W1985364503 hasRelatedWork W2376738066 @default.
- W1985364503 hasRelatedWork W2381212323 @default.
- W1985364503 hasRelatedWork W2461785582 @default.
- W1985364503 hasRelatedWork W2900514107 @default.
- W1985364503 hasRelatedWork W2978913327 @default.
- W1985364503 hasRelatedWork W2998950436 @default.
- W1985364503 hasRelatedWork W3012002593 @default.
- W1985364503 hasRelatedWork W599787814 @default.
- W1985364503 hasRelatedWork W92613474 @default.
- W1985364503 isParatext "false" @default.
- W1985364503 isRetracted "false" @default.
- W1985364503 magId "1985364503" @default.
- W1985364503 workType "article" @default.