Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985452602> ?p ?o ?g. }
- W1985452602 endingPage "890" @default.
- W1985452602 startingPage "874" @default.
- W1985452602 abstract "Purpose: In recent times, longitudinal field MRI-linac systems have been proposed for 6 MV MRI-guided radiotherapy (MRIgRT). The magnetic field is parallel with the beam axis and so will alter the transport properties of any electron contamination particles. The purpose of this work is to provide a first investigation into the potential effects of the MR and fringe magnetic fields on the electron contamination as it is transported toward a phantom, in turn, providing an estimate of the expected patient skin dose changes in such a modality. Methods: Geant4 Monte Carlo simulations of a water phantom exposed to a 6 MV x-ray beam were performed. Longitudinal magnetic fields of strengths between 0 and 3 T were applied to a 30 × 30 × 20 cm3 phantom. Surrounding the phantom there is a region where the magnetic field is at full MRI strength, consistent with clinical MRI systems. Beyond this the fringe magnetic field entering the collimation system is also modeled. The MRI-coil thickness, fringe field properties, and isocentric distance are varied and investigated. Beam field sizes of 5 × 5, 10 × 10, 15 × 15 and 20 × 20 cm2 were simulated. Central axis dose, 2D virtual entry skin dose films, and 70 m skin depth doses were calculated using high resolution scoring voxels. Results: In the presence of a longitudinal magnetic field, electron contamination from the linear accelerator is encouraged to travel almost directly toward the patient surface with minimal lateral spread. This results in a concentration of electron contamination within the x-ray beam outline. This concentration is particularly encouraged if the fringe field encompasses the collimation system. Skin dose increases of up to 1000% were observed for certain configurations and increases above Dmax were common. In nonmagnetically shielded cases, electron contamination generated from the jaw faces and air column is trapped and propagated almost directly to the phantom entry region, giving rise to intense dose hot spots inside the x-ray treatment field. These range up to 1000% or more of Dmax at the CAX, depending on field size, isocenter, and coil thickness. In the case of a fully magnetically shielded collimation system and the lowest MRI field of 0.25 T, the entry skin dose is expected to increase to at least 40%, 50%, 65%, and 80% of Dmax for 5 × 5, 10 × 10, 15 × 15, and 20 × 20 cm2, respectively. Conclusions: Electron contamination from the linac head and air column may cause considerable skin dose increases or hot spots at the beam central axis on the entry side of a phantom or patient in longitudinal field 6 MV MRIgRT. This depends heavily on the properties of the magnetic fringe field entering the linac beam collimation system. The skin dose increase is also related to the MRI-coil thickness, the fringe field, and the isocenter distance of the linac. The results of this work indicate that the properties of the MRI fringe field, electron contamination production, and transport must be considered carefully during the design stage of a longitudinal MRI-linac system." @default.
- W1985452602 created "2016-06-24" @default.
- W1985452602 creator A5003240891 @default.
- W1985452602 creator A5064266739 @default.
- W1985452602 creator A5065334204 @default.
- W1985452602 creator A5074222391 @default.
- W1985452602 creator A5078897033 @default.
- W1985452602 date "2012-01-25" @default.
- W1985452602 modified "2023-09-27" @default.
- W1985452602 title "Electron contamination modeling and skin dose in 6 MV longitudinal field MRIgRT: Impact of the MRI and MRI fringe field" @default.
- W1985452602 cites W1963947618 @default.
- W1985452602 cites W1973686282 @default.
- W1985452602 cites W1979385924 @default.
- W1985452602 cites W1979900401 @default.
- W1985452602 cites W1990821792 @default.
- W1985452602 cites W2004422396 @default.
- W1985452602 cites W2016011388 @default.
- W1985452602 cites W2017390315 @default.
- W1985452602 cites W2020767495 @default.
- W1985452602 cites W2027637750 @default.
- W1985452602 cites W2030478245 @default.
- W1985452602 cites W2038079452 @default.
- W1985452602 cites W2038967611 @default.
- W1985452602 cites W2041719022 @default.
- W1985452602 cites W2042810528 @default.
- W1985452602 cites W2044428967 @default.
- W1985452602 cites W2049394815 @default.
- W1985452602 cites W2063401780 @default.
- W1985452602 cites W2066748345 @default.
- W1985452602 cites W2067370377 @default.
- W1985452602 cites W2071183496 @default.
- W1985452602 cites W2075601151 @default.
- W1985452602 cites W2076170353 @default.
- W1985452602 cites W2085995909 @default.
- W1985452602 cites W2087717639 @default.
- W1985452602 cites W2090007439 @default.
- W1985452602 cites W2110476470 @default.
- W1985452602 cites W2125048685 @default.
- W1985452602 cites W2127001214 @default.
- W1985452602 cites W2128158076 @default.
- W1985452602 cites W2138634570 @default.
- W1985452602 cites W2143996584 @default.
- W1985452602 doi "https://doi.org/10.1118/1.3676181" @default.
- W1985452602 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22320797" @default.
- W1985452602 hasPublicationYear "2012" @default.
- W1985452602 type Work @default.
- W1985452602 sameAs 1985452602 @default.
- W1985452602 citedByCount "59" @default.
- W1985452602 countsByYear W19854526022012 @default.
- W1985452602 countsByYear W19854526022013 @default.
- W1985452602 countsByYear W19854526022014 @default.
- W1985452602 countsByYear W19854526022015 @default.
- W1985452602 countsByYear W19854526022016 @default.
- W1985452602 countsByYear W19854526022017 @default.
- W1985452602 countsByYear W19854526022018 @default.
- W1985452602 countsByYear W19854526022019 @default.
- W1985452602 countsByYear W19854526022020 @default.
- W1985452602 countsByYear W19854526022021 @default.
- W1985452602 countsByYear W19854526022022 @default.
- W1985452602 countsByYear W19854526022023 @default.
- W1985452602 crossrefType "journal-article" @default.
- W1985452602 hasAuthorship W1985452602A5003240891 @default.
- W1985452602 hasAuthorship W1985452602A5064266739 @default.
- W1985452602 hasAuthorship W1985452602A5065334204 @default.
- W1985452602 hasAuthorship W1985452602A5074222391 @default.
- W1985452602 hasAuthorship W1985452602A5078897033 @default.
- W1985452602 hasBestOaLocation W19854526022 @default.
- W1985452602 hasConcept C104293457 @default.
- W1985452602 hasConcept C105795698 @default.
- W1985452602 hasConcept C115260700 @default.
- W1985452602 hasConcept C120665830 @default.
- W1985452602 hasConcept C121332964 @default.
- W1985452602 hasConcept C126838900 @default.
- W1985452602 hasConcept C136229726 @default.
- W1985452602 hasConcept C143409427 @default.
- W1985452602 hasConcept C147120987 @default.
- W1985452602 hasConcept C168834538 @default.
- W1985452602 hasConcept C192562407 @default.
- W1985452602 hasConcept C19499675 @default.
- W1985452602 hasConcept C202444582 @default.
- W1985452602 hasConcept C2989005 @default.
- W1985452602 hasConcept C30403606 @default.
- W1985452602 hasConcept C33923547 @default.
- W1985452602 hasConcept C34445779 @default.
- W1985452602 hasConcept C46141821 @default.
- W1985452602 hasConcept C520434653 @default.
- W1985452602 hasConcept C62520636 @default.
- W1985452602 hasConcept C71924100 @default.
- W1985452602 hasConcept C75088862 @default.
- W1985452602 hasConcept C95312477 @default.
- W1985452602 hasConcept C95390329 @default.
- W1985452602 hasConcept C9652623 @default.
- W1985452602 hasConceptScore W1985452602C104293457 @default.
- W1985452602 hasConceptScore W1985452602C105795698 @default.
- W1985452602 hasConceptScore W1985452602C115260700 @default.
- W1985452602 hasConceptScore W1985452602C120665830 @default.
- W1985452602 hasConceptScore W1985452602C121332964 @default.
- W1985452602 hasConceptScore W1985452602C126838900 @default.