Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985690171> ?p ?o ?g. }
- W1985690171 endingPage "60" @default.
- W1985690171 startingPage "47" @default.
- W1985690171 abstract "A common task in signal processing is the estimation of the parameters of a probability distribution function. Perhaps the most frequently encountered estimation problem is the estimation of the mean of a signal in noise. In many parameter estimation problems the situation is more complicated because direct access to the data necessary to estimate the parameters is impossible, or some of the data are missing. Such difficulties arise when an outcome is a result of an accumulation of simpler outcomes, or when outcomes are clumped together, for example, in a binning or histogram operation. There may also be data dropouts or clustering in such a way that the number of underlying data points is unknown (censoring and/or truncation). The EM (expectation-maximization) algorithm is ideally suited to problems of this sort, in that it produces maximum-likelihood (ML) estimates of parameters when there is a many-to-one mapping from an underlying distribution to the distribution governing the observation. The EM algorithm is presented at a level suitable for signal processing practitioners who have had some exposure to estimation theory." @default.
- W1985690171 created "2016-06-24" @default.
- W1985690171 creator A5015356150 @default.
- W1985690171 date "1996-01-01" @default.
- W1985690171 modified "2023-10-18" @default.
- W1985690171 title "The expectation-maximization algorithm" @default.
- W1985690171 cites W1924852195 @default.
- W1985690171 cites W1981367467 @default.
- W1985690171 cites W2000460658 @default.
- W1985690171 cites W2003597177 @default.
- W1985690171 cites W2018086746 @default.
- W1985690171 cites W2020543282 @default.
- W1985690171 cites W2025653905 @default.
- W1985690171 cites W2036559876 @default.
- W1985690171 cites W2036851433 @default.
- W1985690171 cites W2053742104 @default.
- W1985690171 cites W2069371232 @default.
- W1985690171 cites W2069629287 @default.
- W1985690171 cites W2070386984 @default.
- W1985690171 cites W2075721610 @default.
- W1985690171 cites W2080695875 @default.
- W1985690171 cites W2086699924 @default.
- W1985690171 cites W2098457679 @default.
- W1985690171 cites W2103687095 @default.
- W1985690171 cites W2104983284 @default.
- W1985690171 cites W2105576487 @default.
- W1985690171 cites W2109919255 @default.
- W1985690171 cites W2123422407 @default.
- W1985690171 cites W2124253112 @default.
- W1985690171 cites W2125838338 @default.
- W1985690171 cites W2135355210 @default.
- W1985690171 cites W2142589122 @default.
- W1985690171 cites W2143819079 @default.
- W1985690171 cites W2146852736 @default.
- W1985690171 cites W2148986322 @default.
- W1985690171 cites W2151642291 @default.
- W1985690171 cites W2162056481 @default.
- W1985690171 cites W2164802716 @default.
- W1985690171 cites W28941067 @default.
- W1985690171 cites W4242118210 @default.
- W1985690171 cites W4242587639 @default.
- W1985690171 cites W4247771542 @default.
- W1985690171 doi "https://doi.org/10.1109/79.543975" @default.
- W1985690171 hasPublicationYear "1996" @default.
- W1985690171 type Work @default.
- W1985690171 sameAs 1985690171 @default.
- W1985690171 citedByCount "2481" @default.
- W1985690171 countsByYear W19856901712012 @default.
- W1985690171 countsByYear W19856901712013 @default.
- W1985690171 countsByYear W19856901712014 @default.
- W1985690171 countsByYear W19856901712015 @default.
- W1985690171 countsByYear W19856901712016 @default.
- W1985690171 countsByYear W19856901712017 @default.
- W1985690171 countsByYear W19856901712018 @default.
- W1985690171 countsByYear W19856901712019 @default.
- W1985690171 countsByYear W19856901712020 @default.
- W1985690171 countsByYear W19856901712021 @default.
- W1985690171 countsByYear W19856901712022 @default.
- W1985690171 countsByYear W19856901712023 @default.
- W1985690171 crossrefType "journal-article" @default.
- W1985690171 hasAuthorship W1985690171A5015356150 @default.
- W1985690171 hasConcept C105795698 @default.
- W1985690171 hasConcept C106195933 @default.
- W1985690171 hasConcept C11413529 @default.
- W1985690171 hasConcept C115961682 @default.
- W1985690171 hasConcept C119857082 @default.
- W1985690171 hasConcept C124101348 @default.
- W1985690171 hasConcept C126255220 @default.
- W1985690171 hasConcept C137668524 @default.
- W1985690171 hasConcept C153180895 @default.
- W1985690171 hasConcept C154945302 @default.
- W1985690171 hasConcept C167928553 @default.
- W1985690171 hasConcept C182081679 @default.
- W1985690171 hasConcept C23123220 @default.
- W1985690171 hasConcept C2776330181 @default.
- W1985690171 hasConcept C33923547 @default.
- W1985690171 hasConcept C41008148 @default.
- W1985690171 hasConcept C49781872 @default.
- W1985690171 hasConcept C53533937 @default.
- W1985690171 hasConcept C73555534 @default.
- W1985690171 hasConcept C88548561 @default.
- W1985690171 hasConcept C89106044 @default.
- W1985690171 hasConceptScore W1985690171C105795698 @default.
- W1985690171 hasConceptScore W1985690171C106195933 @default.
- W1985690171 hasConceptScore W1985690171C11413529 @default.
- W1985690171 hasConceptScore W1985690171C115961682 @default.
- W1985690171 hasConceptScore W1985690171C119857082 @default.
- W1985690171 hasConceptScore W1985690171C124101348 @default.
- W1985690171 hasConceptScore W1985690171C126255220 @default.
- W1985690171 hasConceptScore W1985690171C137668524 @default.
- W1985690171 hasConceptScore W1985690171C153180895 @default.
- W1985690171 hasConceptScore W1985690171C154945302 @default.
- W1985690171 hasConceptScore W1985690171C167928553 @default.
- W1985690171 hasConceptScore W1985690171C182081679 @default.
- W1985690171 hasConceptScore W1985690171C23123220 @default.
- W1985690171 hasConceptScore W1985690171C2776330181 @default.
- W1985690171 hasConceptScore W1985690171C33923547 @default.
- W1985690171 hasConceptScore W1985690171C41008148 @default.