Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985719560> ?p ?o ?g. }
- W1985719560 endingPage "1813" @default.
- W1985719560 startingPage "1802" @default.
- W1985719560 abstract "We revisit the problem of the molecular mechanism of the chain diffusion between crystalline and amorphous fractions in semicrystalline polyethylene (PE). There exists a long-standing controversy on the nature of the topological point defects which diffuse along the chain stems in crystallites and shift the stems. Namely, the conformational (including gauche conformations) twist–compression (interstitial-like) and the smooth (soliton-like) twist–tension (vacancy-like) localized defects were offered for this role. However, none of the proposed models for the process could explain all the experimental facts which seemed unclear and contradictory. Moreover, it was discovered recently that in PE samples of uncommon morphology (electron beam irradiated samples, fibers and single crystals) the diffusion process has the activation energy about 3 times less than that in common melt-crystallized samples. No explanation ever followed. We have carried out molecular dynamics (MD) simulation of both the defects in a realistic model of PE crystal and obtained estimates for their formation energies and diffusion coefficients. These estimates together with analysis of available experimental data allow to solve both the problems and to propose models for molecular mechanisms of the observed diffusion processes. The agents of the ‘old’ diffusion process are the smooth twist–tension defects. Shifts in a chain stem of a crystallite in a common sample are initiated at the interface to an amorphous region through extended thermal motion of the chain stem in the amorphous region. If the motion causes a strong pull (with a twist) at the chain stem in the crystallite, such motion produces a smooth defect of twist–tension on this stem. The proposed molecular model conforms with available mechanical experiments if one accepts that the process corresponds to the most low temperature (α1) from the α-peaks observed. The ‘new’ diffusion process results from diffusion of the conformational twist–compression defects in crystallites. The needed sequence of conformations appears near a crystallite as a result of a quick gamma process. Because the state of the semicrystalline polymer is unstable, the position of the boundary between the crystalline and disordered regions fluctuates so that segments of chains pass from disordered to crystalline state (and vice versa). The conformational defects in disordered region are captured through expansion of the crystalline region where they become stable and diffuse along the chains. Our MD estimate for the activation energy of the process Eact ≤ 8.65 kcal/mol is in a good agreement with the experimental value 7 kcal/mol. The diffusion coefficients of both the defects are too high to have effect on the statistics of both of these very slow processes. Therefore the statistics of the ‘old’ process is the statistics of strong thermal pulls at chain stems in crystallites, and the statistics of the ‘new’ process is related to the statistics of fluctuations of the position of the boundaries between crystalline and disordered fractions." @default.
- W1985719560 created "2016-06-24" @default.
- W1985719560 creator A5011732720 @default.
- W1985719560 creator A5071204993 @default.
- W1985719560 creator A5075915996 @default.
- W1985719560 date "2007-03-01" @default.
- W1985719560 modified "2023-10-17" @default.
- W1985719560 title "Molecular mechanisms of the chain diffusion between crystalline and amorphous fractions in polyethylene" @default.
- W1985719560 cites W1585809393 @default.
- W1985719560 cites W1625715378 @default.
- W1985719560 cites W1963892964 @default.
- W1985719560 cites W1969932711 @default.
- W1985719560 cites W1972787763 @default.
- W1985719560 cites W1979046104 @default.
- W1985719560 cites W1986056571 @default.
- W1985719560 cites W1987537163 @default.
- W1985719560 cites W1989451956 @default.
- W1985719560 cites W1990799888 @default.
- W1985719560 cites W1992213804 @default.
- W1985719560 cites W1999494681 @default.
- W1985719560 cites W2000428515 @default.
- W1985719560 cites W2004417989 @default.
- W1985719560 cites W2005072336 @default.
- W1985719560 cites W2009171013 @default.
- W1985719560 cites W2009303734 @default.
- W1985719560 cites W2011770169 @default.
- W1985719560 cites W2013317642 @default.
- W1985719560 cites W2016682636 @default.
- W1985719560 cites W2019154604 @default.
- W1985719560 cites W2022341661 @default.
- W1985719560 cites W2022376368 @default.
- W1985719560 cites W2024206572 @default.
- W1985719560 cites W2026729868 @default.
- W1985719560 cites W2028325995 @default.
- W1985719560 cites W2033999053 @default.
- W1985719560 cites W2035266068 @default.
- W1985719560 cites W2046832784 @default.
- W1985719560 cites W2053603713 @default.
- W1985719560 cites W2057694448 @default.
- W1985719560 cites W2061735805 @default.
- W1985719560 cites W2065235061 @default.
- W1985719560 cites W2072946648 @default.
- W1985719560 cites W2078665941 @default.
- W1985719560 cites W2085969741 @default.
- W1985719560 cites W2099509510 @default.
- W1985719560 cites W2115000736 @default.
- W1985719560 cites W2138519652 @default.
- W1985719560 cites W2144267011 @default.
- W1985719560 cites W2148639083 @default.
- W1985719560 cites W2149373955 @default.
- W1985719560 cites W2151465110 @default.
- W1985719560 cites W2152817474 @default.
- W1985719560 cites W2157427589 @default.
- W1985719560 cites W2164233220 @default.
- W1985719560 doi "https://doi.org/10.1016/j.polymer.2006.12.032" @default.
- W1985719560 hasPublicationYear "2007" @default.
- W1985719560 type Work @default.
- W1985719560 sameAs 1985719560 @default.
- W1985719560 citedByCount "29" @default.
- W1985719560 countsByYear W19857195602012 @default.
- W1985719560 countsByYear W19857195602013 @default.
- W1985719560 countsByYear W19857195602014 @default.
- W1985719560 countsByYear W19857195602015 @default.
- W1985719560 countsByYear W19857195602017 @default.
- W1985719560 countsByYear W19857195602018 @default.
- W1985719560 countsByYear W19857195602019 @default.
- W1985719560 countsByYear W19857195602020 @default.
- W1985719560 countsByYear W19857195602022 @default.
- W1985719560 countsByYear W19857195602023 @default.
- W1985719560 crossrefType "journal-article" @default.
- W1985719560 hasAuthorship W1985719560A5011732720 @default.
- W1985719560 hasAuthorship W1985719560A5071204993 @default.
- W1985719560 hasAuthorship W1985719560A5075915996 @default.
- W1985719560 hasConcept C114221277 @default.
- W1985719560 hasConcept C121332964 @default.
- W1985719560 hasConcept C137637335 @default.
- W1985719560 hasConcept C147597530 @default.
- W1985719560 hasConcept C159467904 @default.
- W1985719560 hasConcept C159985019 @default.
- W1985719560 hasConcept C185592680 @default.
- W1985719560 hasConcept C192562407 @default.
- W1985719560 hasConcept C199360897 @default.
- W1985719560 hasConcept C2524010 @default.
- W1985719560 hasConcept C2776196297 @default.
- W1985719560 hasConcept C2779751980 @default.
- W1985719560 hasConcept C2781285689 @default.
- W1985719560 hasConcept C33923547 @default.
- W1985719560 hasConcept C41008148 @default.
- W1985719560 hasConcept C46275449 @default.
- W1985719560 hasConcept C56052488 @default.
- W1985719560 hasConcept C59593255 @default.
- W1985719560 hasConcept C69357855 @default.
- W1985719560 hasConcept C8010536 @default.
- W1985719560 hasConcept C97355855 @default.
- W1985719560 hasConceptScore W1985719560C114221277 @default.
- W1985719560 hasConceptScore W1985719560C121332964 @default.
- W1985719560 hasConceptScore W1985719560C137637335 @default.
- W1985719560 hasConceptScore W1985719560C147597530 @default.