Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985772605> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1985772605 endingPage "323" @default.
- W1985772605 startingPage "316" @default.
- W1985772605 abstract "Privacy-preserving data mining, is a novel research direction in data mining and statistical databases, where data mining algorithms are analyzed for the side effects they incur in data privacy [Verykios, V., Bertino, E., Fovino, I. G., Provenza, L. P., Saygin, Y., & Theodoridis, Y. (2004). State-of-the-art in privacy preserving data mining. SIGMOD Record 33(1), 50–57, March 2004]. For example, through data mining, one is able to infer sensitive information, including personal information or even patterns, from non-sensitive information or unclassified data. There have been two types of privacy concerning data mining. The first type of privacy, called output privacy, is that the data is minimally altered so that the mining result will not disclose certain privacy. The second type of privacy, called input privacy, is that the data is manipulated so that the mining result is not affected or minimally affected. In output privacy of hiding association rules, current approaches require hidden rules or patterns been given in advance [Dasseni, E., Verykios, V., Elmagarmid, A., & Bertino, E. (2001). Hiding association rules by using confidence and support. In Proceedings of 4th information hiding workshop, Pittsburgh, PA (pp. 369–383); Oliveira, S., & Zaiane, O. (2002). Privacy preserving frequent itemset mining. In Proceedings of IEEE international conference on data mining, November (pp. 43–54); Oliveira, S., & Zaiane, O. (2003). Algorithms for balancing privacy and knowledge discovery in association rule mining. In Proceedings of 7th international database engineering and applications symposium (IDEAS03), Hong Kong, July; Oliveira, S., & Zaiane, O. (2003). Protecting sensitive knowledge by data sanitization. In Proceedings of IEEE international conference on data mining, November 2003; Saygin, Y., Verykios, V., & Clifton, C. (2001). Using unknowns to prevent discovery of association rules. SIGMOND Record 30(4), 45–54; Verykios, V., Elmagarmid, A., Bertino, E., Saygin, Y., & Dasseni, E. (2004). Association rules hiding. IEEE Transactions on Knowledge and Data Engineering 16(4), 434–447]. This selection of rules would require data mining process to be executed first. Based on the discovered rules and privacy requirements, hidden rules or patterns are then selected manually. However, for some applications, we are interested in hiding certain constrained classes of association rules such as informative association rule sets [Li J., Shen H., & Topor R. (2001). Mining the smallest association rule set for predictions. In Proceedings of the 2001 IEEE international conference on data mining (pp. 361–368)]. To hide such rule sets, the pre-process of finding these hidden rules can be integrated into the hiding process as long as the predicting items are given. In this work, we propose two algorithms, ISL (Increase Support of LHS) and DSR (Decrease Support of RHS), to automatically hiding informative association rule sets without pre-mining and selection of hidden rules. Examples illustrating the proposed algorithms are given. Numerical experiments are performed to show the various effects of the algorithms. Recommendations of appropriate usage of the proposed algorithms based on the characteristics of databases are reported." @default.
- W1985772605 created "2016-06-24" @default.
- W1985772605 creator A5022743018 @default.
- W1985772605 creator A5051734633 @default.
- W1985772605 creator A5066605364 @default.
- W1985772605 date "2007-08-01" @default.
- W1985772605 modified "2023-09-27" @default.
- W1985772605 title "Hiding informative association rule sets" @default.
- W1985772605 cites W1528076390 @default.
- W1985772605 cites W1580456931 @default.
- W1985772605 cites W1977493358 @default.
- W1985772605 cites W1999602050 @default.
- W1985772605 cites W2002352982 @default.
- W1985772605 cites W2011332377 @default.
- W1985772605 cites W2078937669 @default.
- W1985772605 cites W2093367651 @default.
- W1985772605 cites W2095576022 @default.
- W1985772605 cites W2123108022 @default.
- W1985772605 cites W2128906841 @default.
- W1985772605 cites W2130099852 @default.
- W1985772605 cites W2145747124 @default.
- W1985772605 cites W2155335555 @default.
- W1985772605 cites W2161067131 @default.
- W1985772605 cites W2166094835 @default.
- W1985772605 cites W2166559705 @default.
- W1985772605 doi "https://doi.org/10.1016/j.eswa.2006.05.022" @default.
- W1985772605 hasPublicationYear "2007" @default.
- W1985772605 type Work @default.
- W1985772605 sameAs 1985772605 @default.
- W1985772605 citedByCount "77" @default.
- W1985772605 countsByYear W19857726052012 @default.
- W1985772605 countsByYear W19857726052013 @default.
- W1985772605 countsByYear W19857726052014 @default.
- W1985772605 countsByYear W19857726052015 @default.
- W1985772605 countsByYear W19857726052016 @default.
- W1985772605 countsByYear W19857726052017 @default.
- W1985772605 countsByYear W19857726052018 @default.
- W1985772605 countsByYear W19857726052019 @default.
- W1985772605 countsByYear W19857726052020 @default.
- W1985772605 countsByYear W19857726052021 @default.
- W1985772605 countsByYear W19857726052022 @default.
- W1985772605 countsByYear W19857726052023 @default.
- W1985772605 crossrefType "journal-article" @default.
- W1985772605 hasAuthorship W1985772605A5022743018 @default.
- W1985772605 hasAuthorship W1985772605A5051734633 @default.
- W1985772605 hasAuthorship W1985772605A5066605364 @default.
- W1985772605 hasConcept C123201435 @default.
- W1985772605 hasConcept C124101348 @default.
- W1985772605 hasConcept C137822555 @default.
- W1985772605 hasConcept C169093310 @default.
- W1985772605 hasConcept C193524817 @default.
- W1985772605 hasConcept C38652104 @default.
- W1985772605 hasConcept C41008148 @default.
- W1985772605 hasConceptScore W1985772605C123201435 @default.
- W1985772605 hasConceptScore W1985772605C124101348 @default.
- W1985772605 hasConceptScore W1985772605C137822555 @default.
- W1985772605 hasConceptScore W1985772605C169093310 @default.
- W1985772605 hasConceptScore W1985772605C193524817 @default.
- W1985772605 hasConceptScore W1985772605C38652104 @default.
- W1985772605 hasConceptScore W1985772605C41008148 @default.
- W1985772605 hasIssue "2" @default.
- W1985772605 hasLocation W19857726051 @default.
- W1985772605 hasOpenAccess W1985772605 @default.
- W1985772605 hasPrimaryLocation W19857726051 @default.
- W1985772605 hasRelatedWork W1985772605 @default.
- W1985772605 hasRelatedWork W2277391111 @default.
- W1985772605 hasRelatedWork W2339880295 @default.
- W1985772605 hasRelatedWork W2616994287 @default.
- W1985772605 hasRelatedWork W2971364060 @default.
- W1985772605 hasRelatedWork W2982556685 @default.
- W1985772605 hasRelatedWork W3122870227 @default.
- W1985772605 hasRelatedWork W2182078957 @default.
- W1985772605 hasRelatedWork W2184334059 @default.
- W1985772605 hasRelatedWork W2571878527 @default.
- W1985772605 hasVolume "33" @default.
- W1985772605 isParatext "false" @default.
- W1985772605 isRetracted "false" @default.
- W1985772605 magId "1985772605" @default.
- W1985772605 workType "article" @default.