Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985774420> ?p ?o ?g. }
- W1985774420 endingPage "466" @default.
- W1985774420 startingPage "411" @default.
- W1985774420 abstract "Turbulent magnetofluids appear in various geophysical and astrophysical contexts, in phenomena associated with planets, stars, galaxies and the universe itself. In many cases, large-scale magnetic fields are observed, though a better knowledge of magnetofluid turbulence is needed to more fully understand the dynamo processes that produce them. One approach is to develop the statistical mechanics of ideal (i.e. non-dissipative), incompressible, homogeneous magnetohydrodynamic (MHD) turbulence, known as “absolute equilibrium ensemble” theory, as far as possible by studying model systems with the goal of finding those aspects that survive the introduction of viscosity and resistivity. Here, we review the progress that has been made in this direction. We examine both three-dimensional (3-D) and two-dimensional (2-D) model systems based on discrete Fourier representations. The basic equations are those of incompressible MHD and may include the effects of rotation and/or a mean magnetic field B o. Statistical predictions are that Fourier coefficients of the velocity and magnetic field are zero-mean random variables. However, this is not the case, in general, for we observe non-ergodic behavior in very long time computer simulations of ideal turbulence: low wavenumber Fourier modes that have relatively large means and small standard deviations, i.e. coherent structure. In particular, ergodicity appears strongly broken when B o = 0 and weakly broken when B o ≠ 0. Broken ergodicity in MHD turbulence is explained by an eigenanalysis of modal covariance matrices. This produces a set of modal eigenvalues inversely proportional to the expected energy of their associated eigenvariables. A large disparity in eigenvalues within the same mode (identified by wavevector k ) can occur at low values of wavenumber k = | k |, especially when B o = 0. This disparity breaks the ergodicity of eigenvariables with smallest eigenvalues (largest energies). This leads to coherent structure in models of ideal homogeneous MHD turbulence, which can occur at lowest values of wavenumber k for 3-D cases, and at either lowest or highest k for ideal 2-D magnetofluids. These ideal results appear relevant for unforced, decaying MHD turbulence, so that broken ergodicity effects in MHD turbulence survive dissipation. In comparison, we will also examine ideal hydrodynamic (HD) turbulence, which, in the 3-D case, will be seen to differ fundamentally from ideal MHD turbulence in that coherent structure due to broken ergodicity can only occur at maximum k in numerical simulations. However, a nonzero viscosity eliminates this ideal 3-D HD structure, so that unforced, decaying 3-D HD turbulence is expected to be ergodic. In summary, broken ergodicity in MHD turbulence leads to energetic, large-scale, quasistationary magnetic fields (coherent structures) in numerical models of bounded, turbulent magnetofluids. Thus, broken ergodicity provides a large-scale dynamo mechanism within computer models of homogeneous MHD turbulence. These results may help us to better understand the origin of global magnetic fields in astrophysical and geophysical objects." @default.
- W1985774420 created "2016-06-24" @default.
- W1985774420 creator A5010977470 @default.
- W1985774420 date "2013-08-01" @default.
- W1985774420 modified "2023-10-18" @default.
- W1985774420 title "Broken ergodicity in magnetohydrodynamic turbulence" @default.
- W1985774420 cites W1490592601 @default.
- W1985774420 cites W16290526 @default.
- W1985774420 cites W1965013939 @default.
- W1985774420 cites W1966890000 @default.
- W1985774420 cites W1968505257 @default.
- W1985774420 cites W1976345512 @default.
- W1985774420 cites W1978995203 @default.
- W1985774420 cites W1984144041 @default.
- W1985774420 cites W1989285707 @default.
- W1985774420 cites W1997989802 @default.
- W1985774420 cites W2001038836 @default.
- W1985774420 cites W2001277610 @default.
- W1985774420 cites W2016619111 @default.
- W1985774420 cites W2022110316 @default.
- W1985774420 cites W2026267877 @default.
- W1985774420 cites W2027795150 @default.
- W1985774420 cites W2028922745 @default.
- W1985774420 cites W2029012219 @default.
- W1985774420 cites W2031789002 @default.
- W1985774420 cites W2034039186 @default.
- W1985774420 cites W2037351457 @default.
- W1985774420 cites W2041350685 @default.
- W1985774420 cites W2041525915 @default.
- W1985774420 cites W2041590311 @default.
- W1985774420 cites W2046093611 @default.
- W1985774420 cites W2047082623 @default.
- W1985774420 cites W2049154153 @default.
- W1985774420 cites W2049185511 @default.
- W1985774420 cites W2058860523 @default.
- W1985774420 cites W2066609626 @default.
- W1985774420 cites W2067496204 @default.
- W1985774420 cites W2067696760 @default.
- W1985774420 cites W2068679467 @default.
- W1985774420 cites W2070264580 @default.
- W1985774420 cites W2071555048 @default.
- W1985774420 cites W2072841479 @default.
- W1985774420 cites W2074447679 @default.
- W1985774420 cites W2075868665 @default.
- W1985774420 cites W2079443658 @default.
- W1985774420 cites W2086127461 @default.
- W1985774420 cites W2091878134 @default.
- W1985774420 cites W2092825205 @default.
- W1985774420 cites W2095434412 @default.
- W1985774420 cites W2096849565 @default.
- W1985774420 cites W2098995445 @default.
- W1985774420 cites W2099228381 @default.
- W1985774420 cites W2114593799 @default.
- W1985774420 cites W2123160401 @default.
- W1985774420 cites W2126388052 @default.
- W1985774420 cites W2127922909 @default.
- W1985774420 cites W2131272233 @default.
- W1985774420 cites W2132188352 @default.
- W1985774420 cites W2134606886 @default.
- W1985774420 cites W2148450704 @default.
- W1985774420 cites W2159865706 @default.
- W1985774420 cites W2169873600 @default.
- W1985774420 cites W2233795704 @default.
- W1985774420 cites W2565064665 @default.
- W1985774420 cites W2797315706 @default.
- W1985774420 cites W2996439688 @default.
- W1985774420 cites W3096035667 @default.
- W1985774420 cites W3102727570 @default.
- W1985774420 cites W3166649147 @default.
- W1985774420 cites W4253531794 @default.
- W1985774420 cites W2015060705 @default.
- W1985774420 doi "https://doi.org/10.1080/03091929.2011.589385" @default.
- W1985774420 hasPublicationYear "2013" @default.
- W1985774420 type Work @default.
- W1985774420 sameAs 1985774420 @default.
- W1985774420 citedByCount "17" @default.
- W1985774420 countsByYear W19857744202012 @default.
- W1985774420 countsByYear W19857744202013 @default.
- W1985774420 countsByYear W19857744202014 @default.
- W1985774420 countsByYear W19857744202016 @default.
- W1985774420 countsByYear W19857744202018 @default.
- W1985774420 countsByYear W19857744202019 @default.
- W1985774420 countsByYear W19857744202021 @default.
- W1985774420 countsByYear W19857744202023 @default.
- W1985774420 crossrefType "journal-article" @default.
- W1985774420 hasAuthorship W1985774420A5010977470 @default.
- W1985774420 hasConcept C115260700 @default.
- W1985774420 hasConcept C121130766 @default.
- W1985774420 hasConcept C121332964 @default.
- W1985774420 hasConcept C121864883 @default.
- W1985774420 hasConcept C135757623 @default.
- W1985774420 hasConcept C196558001 @default.
- W1985774420 hasConcept C201779956 @default.
- W1985774420 hasConcept C2781065038 @default.
- W1985774420 hasConcept C31532427 @default.
- W1985774420 hasConcept C57879066 @default.
- W1985774420 hasConcept C62520636 @default.
- W1985774420 hasConcept C74650414 @default.