Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985778927> ?p ?o ?g. }
Showing items 1 to 50 of
50
with 100 items per page.
- W1985778927 abstract "There has been a large amount of research into the automatic generation of school timetables. Methodologies such as constraint programming, simulated annealing, Tabu search and genetic algorithms have been applied to the school timetabling problem. However, a majority of these studies focus on solving the problem for a particular school and there is very little research into the comparison of the performance of different techniques in solving the school timetabling problem.The study presented in this paper evaluates genetic algorithms (GAs) for the purpose of inducing school timetables. For each problem, the GA implemented iteratively refines an initial population of school timetables using mutation to find a good quality feasible timetable. The performance of the GA on a set of five benchmark problems has been compared to the performance of neural networks, simulated annealing, Tabu search, and greedy search on the same set of problems. The results obtained by the GA were found to be comparable to and an improvement on those produced by the other methods." @default.
- W1985778927 created "2016-06-24" @default.
- W1985778927 creator A5060039893 @default.
- W1985778927 creator A5081976555 @default.
- W1985778927 date "2008-10-06" @default.
- W1985778927 modified "2023-09-24" @default.
- W1985778927 title "An application of genetic algorithms to the school timetabling problem" @default.
- W1985778927 cites W1555693598 @default.
- W1985778927 cites W1968210732 @default.
- W1985778927 cites W2078389146 @default.
- W1985778927 doi "https://doi.org/10.1145/1456659.1456682" @default.
- W1985778927 hasPublicationYear "2008" @default.
- W1985778927 type Work @default.
- W1985778927 sameAs 1985778927 @default.
- W1985778927 citedByCount "17" @default.
- W1985778927 countsByYear W19857789272013 @default.
- W1985778927 countsByYear W19857789272014 @default.
- W1985778927 countsByYear W19857789272015 @default.
- W1985778927 countsByYear W19857789272016 @default.
- W1985778927 countsByYear W19857789272017 @default.
- W1985778927 countsByYear W19857789272018 @default.
- W1985778927 countsByYear W19857789272020 @default.
- W1985778927 crossrefType "proceedings-article" @default.
- W1985778927 hasAuthorship W1985778927A5060039893 @default.
- W1985778927 hasAuthorship W1985778927A5081976555 @default.
- W1985778927 hasConcept C11413529 @default.
- W1985778927 hasConcept C119857082 @default.
- W1985778927 hasConcept C41008148 @default.
- W1985778927 hasConcept C8880873 @default.
- W1985778927 hasConceptScore W1985778927C11413529 @default.
- W1985778927 hasConceptScore W1985778927C119857082 @default.
- W1985778927 hasConceptScore W1985778927C41008148 @default.
- W1985778927 hasConceptScore W1985778927C8880873 @default.
- W1985778927 hasLocation W19857789271 @default.
- W1985778927 hasOpenAccess W1985778927 @default.
- W1985778927 hasPrimaryLocation W19857789271 @default.
- W1985778927 hasRelatedWork W2051956912 @default.
- W1985778927 hasRelatedWork W2115794623 @default.
- W1985778927 hasRelatedWork W2333698505 @default.
- W1985778927 hasRelatedWork W2351491280 @default.
- W1985778927 hasRelatedWork W2371447506 @default.
- W1985778927 hasRelatedWork W2377465662 @default.
- W1985778927 hasRelatedWork W2386372880 @default.
- W1985778927 hasRelatedWork W2386767533 @default.
- W1985778927 hasRelatedWork W2387271259 @default.
- W1985778927 hasRelatedWork W303980170 @default.
- W1985778927 isParatext "false" @default.
- W1985778927 isRetracted "false" @default.
- W1985778927 magId "1985778927" @default.
- W1985778927 workType "article" @default.