Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985900721> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W1985900721 endingPage "479" @default.
- W1985900721 startingPage "475" @default.
- W1985900721 abstract "B LUFF bodies are integral components of aircraft, high-speed trains, automobiles, and many forms of industrial equipment. The minimization of mean and fluctuating force levels generated by bluff bodieswhen placed in afluid streamhas the benefits of reducing drag, vibration, and radiated sound. It is therefore very important that a good understanding of the flowfield about bluff bodies be obtained to achieve these aims. This Note explores how lowReynolds number bluff-body wake interference can affect the generation of unsteady flowand force. The case chosen for study is the interaction of a square cylinder and an infinitely thin flat plate. A rigid square cylinder is one of the most basic forms of a bluff body and when placed in a uniform fluid stream has been shown to exhibit strong vortex shedding, resulting in fluctuating forces and the radiation of sound in the form of an aeolian tone. Previous fluid dynamic experimental studies [1,2] exhibit this strong vortex shedding over a wide range of Reynolds number (10–10). Numerical studies investigating the fluid dynamics [3–6] also confirm this behavior. Despite the wealth of experimental data available for circular cylinders, experimental or numerical data for square cylinders are rare. Available studies include the work of Inoue [7], who performs a numerical simulation of compressible flow about a square cylinder at Re 150. Zhou et al. [8] use an upstream plate to suppress fluctuating lift on a square cylinder. They find that there is an optimal position and size for the upstream plate for effective lift suppression. Studies concerning the control of noise from a circular cylinder are more common. Recent numerical studies [9,10] investigate the use of a splitter plate attached to the base of a circular cylinder. These studies show that vortex shedding can disappear once the splitter plate achieves a certain length. Numerical solutions of the compressible unsteady Navier–Stokes equations for tandem square cylinders [11] show that significant force and noise reduction can occur if the cylinders are placed at a critical spacing in a region in which vortex shedding from the upstream cylinder is suppressed. If this separation distance is increased, the force and noise increase rapidly, due to the reestablishment of upstream vortex shedding and the associated vortex impingement on the downstream cylinder. Other work includes the experimental time-resolved force measurements of tandem bluff bodies by Sakamoto et al. [12] and Alam and Zhou [13], which were used to investigate the phase difference between the aerodynamic forces of each body in the vortex-shedding regime (i.e., the interbody spacing was such that vortex shedding was allowed to occur from each body). In each case, the phase varied linearly with separation distance. Further, Alam and Zhou developed a theoretical model based on the convective properties of isolated bluff-body wakes that agrees reasonably with experimental results. This Note will consider the case of an infinitely thin flat plate placed in the near wake of a square cylinder at a Reynolds number of Re 150. To the author’s knowledge, there have been no previous investigations of the interaction of a thin flat plate with the near wake of a square cylinder. The Note is structured as follows. After outlining the numerical approach (Sec. II), a solution of the incompressible Navier–Stokes equations for the single square cylinder case is presented and validated against available experimental and numerical results (Sec. III). A second solution is then presented that includes the downstream plate (Sec. IV), and the flow and force results are analyzed. The Note concludes with a summary of the key results." @default.
- W1985900721 created "2016-06-24" @default.
- W1985900721 creator A5017021978 @default.
- W1985900721 date "2009-02-01" @default.
- W1985900721 modified "2023-09-27" @default.
- W1985900721 title "Flat-Plate Interaction with the Near Wake of a Square Cylinder" @default.
- W1985900721 cites W1973283742 @default.
- W1985900721 cites W1973597832 @default.
- W1985900721 cites W1979468075 @default.
- W1985900721 cites W1993399058 @default.
- W1985900721 cites W1993521583 @default.
- W1985900721 cites W1997782364 @default.
- W1985900721 cites W2001041016 @default.
- W1985900721 cites W2001730306 @default.
- W1985900721 cites W2010730784 @default.
- W1985900721 cites W2027010684 @default.
- W1985900721 cites W2027961735 @default.
- W1985900721 cites W2077522266 @default.
- W1985900721 cites W2105481273 @default.
- W1985900721 cites W2110187357 @default.
- W1985900721 cites W2112526722 @default.
- W1985900721 doi "https://doi.org/10.2514/1.40503" @default.
- W1985900721 hasPublicationYear "2009" @default.
- W1985900721 type Work @default.
- W1985900721 sameAs 1985900721 @default.
- W1985900721 citedByCount "45" @default.
- W1985900721 countsByYear W19859007212012 @default.
- W1985900721 countsByYear W19859007212013 @default.
- W1985900721 countsByYear W19859007212014 @default.
- W1985900721 countsByYear W19859007212015 @default.
- W1985900721 countsByYear W19859007212016 @default.
- W1985900721 countsByYear W19859007212017 @default.
- W1985900721 countsByYear W19859007212019 @default.
- W1985900721 countsByYear W19859007212020 @default.
- W1985900721 countsByYear W19859007212021 @default.
- W1985900721 countsByYear W19859007212022 @default.
- W1985900721 countsByYear W19859007212023 @default.
- W1985900721 crossrefType "journal-article" @default.
- W1985900721 hasAuthorship W1985900721A5017021978 @default.
- W1985900721 hasConcept C121332964 @default.
- W1985900721 hasConcept C135692309 @default.
- W1985900721 hasConcept C178760647 @default.
- W1985900721 hasConcept C182748727 @default.
- W1985900721 hasConcept C196558001 @default.
- W1985900721 hasConcept C203311528 @default.
- W1985900721 hasConcept C2524010 @default.
- W1985900721 hasConcept C33923547 @default.
- W1985900721 hasConcept C48939323 @default.
- W1985900721 hasConcept C57879066 @default.
- W1985900721 hasConcept C74650414 @default.
- W1985900721 hasConceptScore W1985900721C121332964 @default.
- W1985900721 hasConceptScore W1985900721C135692309 @default.
- W1985900721 hasConceptScore W1985900721C178760647 @default.
- W1985900721 hasConceptScore W1985900721C182748727 @default.
- W1985900721 hasConceptScore W1985900721C196558001 @default.
- W1985900721 hasConceptScore W1985900721C203311528 @default.
- W1985900721 hasConceptScore W1985900721C2524010 @default.
- W1985900721 hasConceptScore W1985900721C33923547 @default.
- W1985900721 hasConceptScore W1985900721C48939323 @default.
- W1985900721 hasConceptScore W1985900721C57879066 @default.
- W1985900721 hasConceptScore W1985900721C74650414 @default.
- W1985900721 hasIssue "2" @default.
- W1985900721 hasLocation W19859007211 @default.
- W1985900721 hasOpenAccess W1985900721 @default.
- W1985900721 hasPrimaryLocation W19859007211 @default.
- W1985900721 hasRelatedWork W1495876544 @default.
- W1985900721 hasRelatedWork W1526206744 @default.
- W1985900721 hasRelatedWork W2024322492 @default.
- W1985900721 hasRelatedWork W2068837303 @default.
- W1985900721 hasRelatedWork W2327555577 @default.
- W1985900721 hasRelatedWork W2376741739 @default.
- W1985900721 hasRelatedWork W2377263852 @default.
- W1985900721 hasRelatedWork W2467723672 @default.
- W1985900721 hasRelatedWork W3183061773 @default.
- W1985900721 hasRelatedWork W87677655 @default.
- W1985900721 hasVolume "47" @default.
- W1985900721 isParatext "false" @default.
- W1985900721 isRetracted "false" @default.
- W1985900721 magId "1985900721" @default.
- W1985900721 workType "article" @default.