Matches in SemOpenAlex for { <https://semopenalex.org/work/W1985998218> ?p ?o ?g. }
- W1985998218 endingPage "22985" @default.
- W1985998218 startingPage "22969" @default.
- W1985998218 abstract "The Ames airborne tracking sunphotometer was operated at the National Oceanic and Atmospheric Administration (NOAA) Mauna Loa Observatory (MLO) in 1991 and 1992 along with the NOAA Climate Monitoring and Diagnostics Laboratory (CMDL) automated tracking sunphotometer and lidar. June 1991 measurements provided calibrations, optical‐depth spectra, and intercomparisons under relatively clean conditions; later measurements provided spectra and comparisons for the Pinatubo cloud plus calibration checks. June 1991 results are similar to previous MLO springtime measurements, with midvisible particle optical depth τ p (λ = 0.526μm) at the near‐background level of 0.012 ± 0.006 and no significant wavelength dependence in the measured range (λ = 0.38 to 1.06μm). The arrival of the Pinatubo cloud in July 1991 increased midvisible particle optical depth by more than an order of magnitude and changed the spectral shape of τ p (λ) to an approximate power law with an exponent of about −1.4. By early September 1991, the spectrum was broadly peaked near 0.5 μm, and by July 1992, it was peaked near 0.8 μm. Our optical‐depth spectra include corrections for diffuse light which increase postvolcanic midvisible τ p values by 1 to 3% (i.e., 0.0015 to 0.0023). NOAA‐ and Ames Research Center (ARC)‐measured spectra are in good agreement. Columnar size distributions inverted from the spectra show that the initial (July 1991) post‐Pinatubo cloud was relatively rich in small particles (r<0.25μm), which were progressively depleted in the August‐September 1991 and July 1992 periods. Conversely, both of the later periods had more of the optically efficient medium‐sized particles (0.25<r<1 μm) than did the fresh July 1991 cloud. These changes are consistent with particle growth by condensation and coagulation. The effective, or area‐weighted, radius increased from 0.22 ± 0.06μm in July 1991 to 0.56 ± 0.12 μm in August‐September 1991 and to 0.86 ± 0.29 μm in July 1992. Corresponding column mass values were 4.8 ± 0.7, 9.1 ± 2.7, and 5.5 ± 2.0 μg/cm 2 , and corresponding column surface areas were 4.4 ± 0.5, 2.9 ± 0.2, and 1.1 ± 0.1 μm 2 /cm 2 . Photometer‐inferred column backscatter values agree with those measured by the CMDL lidar on nearby nights. Combining lidar‐measured backscatter profiles with photometer‐derived backscatter‐to‐area ratios gives peak particle areas that could cause rapid heterogeneous loss of ozone, given sufficiently low particle acidity and suitable solar zenith angles (achieved at mid‐ to high latitudes). Top‐of‐troposphere radiative forcings for the September 1991 and July 1992 optical depths and size distributions over MLO are about −5 and −3 W m −2 , respectively (hence comparable in magnitude but opposite in sign to the radiative forcing caused by the increase in manmade greenhouse gases since the industrial revolution). Heating rates in the Pinatubo layer over MLO are 0.55 ± 0.13 and 0.41 ± 0.14 K d −1 for September 1991 and July 1992, respectively." @default.
- W1985998218 created "2016-06-24" @default.
- W1985998218 creator A5000235372 @default.
- W1985998218 creator A5009926140 @default.
- W1985998218 creator A5013559764 @default.
- W1985998218 creator A5037890802 @default.
- W1985998218 creator A5045293469 @default.
- W1985998218 creator A5047400354 @default.
- W1985998218 creator A5060721989 @default.
- W1985998218 creator A5065953957 @default.
- W1985998218 creator A5076454512 @default.
- W1985998218 creator A5082177665 @default.
- W1985998218 creator A5086784954 @default.
- W1985998218 creator A5088440406 @default.
- W1985998218 date "1993-12-20" @default.
- W1985998218 modified "2023-10-17" @default.
- W1985998218 title "Pinatubo and pre‐Pinatubo optical‐depth spectra: Mauna Loa measurements, comparisons, inferred particle size distributions, radiative effects, and relationship to lidar data" @default.
- W1985998218 cites W1966821542 @default.
- W1985998218 cites W1972389542 @default.
- W1985998218 cites W1973525385 @default.
- W1985998218 cites W1974381974 @default.
- W1985998218 cites W1981719480 @default.
- W1985998218 cites W1987881481 @default.
- W1985998218 cites W1987917766 @default.
- W1985998218 cites W1988394749 @default.
- W1985998218 cites W1993067506 @default.
- W1985998218 cites W1994332644 @default.
- W1985998218 cites W1999971203 @default.
- W1985998218 cites W2000986066 @default.
- W1985998218 cites W2003266253 @default.
- W1985998218 cites W2004853090 @default.
- W1985998218 cites W2006330046 @default.
- W1985998218 cites W2008236795 @default.
- W1985998218 cites W2014274100 @default.
- W1985998218 cites W2019349476 @default.
- W1985998218 cites W2022334519 @default.
- W1985998218 cites W2023523420 @default.
- W1985998218 cites W2024828374 @default.
- W1985998218 cites W2026270723 @default.
- W1985998218 cites W2029358337 @default.
- W1985998218 cites W2032728979 @default.
- W1985998218 cites W2033999968 @default.
- W1985998218 cites W2035337681 @default.
- W1985998218 cites W2036123427 @default.
- W1985998218 cites W2036237123 @default.
- W1985998218 cites W2042731068 @default.
- W1985998218 cites W2050083666 @default.
- W1985998218 cites W2070268951 @default.
- W1985998218 cites W2073550807 @default.
- W1985998218 cites W2077589534 @default.
- W1985998218 cites W2078978151 @default.
- W1985998218 cites W2088488427 @default.
- W1985998218 cites W2090945426 @default.
- W1985998218 cites W2099025673 @default.
- W1985998218 cites W2099201932 @default.
- W1985998218 cites W2103800060 @default.
- W1985998218 cites W2104953453 @default.
- W1985998218 cites W2109122413 @default.
- W1985998218 cites W2111133258 @default.
- W1985998218 cites W2113736264 @default.
- W1985998218 cites W2138677278 @default.
- W1985998218 cites W2143134519 @default.
- W1985998218 cites W2145557750 @default.
- W1985998218 cites W2148333531 @default.
- W1985998218 cites W2169655940 @default.
- W1985998218 cites W2172992686 @default.
- W1985998218 cites W4252965528 @default.
- W1985998218 doi "https://doi.org/10.1029/93jd02308" @default.
- W1985998218 hasPublicationYear "1993" @default.
- W1985998218 type Work @default.
- W1985998218 sameAs 1985998218 @default.
- W1985998218 citedByCount "227" @default.
- W1985998218 countsByYear W19859982182012 @default.
- W1985998218 countsByYear W19859982182013 @default.
- W1985998218 countsByYear W19859982182014 @default.
- W1985998218 countsByYear W19859982182015 @default.
- W1985998218 countsByYear W19859982182016 @default.
- W1985998218 countsByYear W19859982182017 @default.
- W1985998218 countsByYear W19859982182018 @default.
- W1985998218 countsByYear W19859982182019 @default.
- W1985998218 countsByYear W19859982182020 @default.
- W1985998218 countsByYear W19859982182021 @default.
- W1985998218 countsByYear W19859982182023 @default.
- W1985998218 crossrefType "journal-article" @default.
- W1985998218 hasAuthorship W1985998218A5000235372 @default.
- W1985998218 hasAuthorship W1985998218A5009926140 @default.
- W1985998218 hasAuthorship W1985998218A5013559764 @default.
- W1985998218 hasAuthorship W1985998218A5037890802 @default.
- W1985998218 hasAuthorship W1985998218A5045293469 @default.
- W1985998218 hasAuthorship W1985998218A5047400354 @default.
- W1985998218 hasAuthorship W1985998218A5060721989 @default.
- W1985998218 hasAuthorship W1985998218A5065953957 @default.
- W1985998218 hasAuthorship W1985998218A5076454512 @default.
- W1985998218 hasAuthorship W1985998218A5082177665 @default.
- W1985998218 hasAuthorship W1985998218A5086784954 @default.
- W1985998218 hasAuthorship W1985998218A5088440406 @default.
- W1985998218 hasConcept C120665830 @default.
- W1985998218 hasConcept C121332964 @default.