Matches in SemOpenAlex for { <https://semopenalex.org/work/W1986124084> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W1986124084 abstract "Computing loci of rank defects of linear matrices (also called the MinRank problem) is a fundamental NP-hard problem of linear algebra which has applications in Cryptology, in Error Correcting Codes and in Geometry. Given a square linear matrix (i.e. a matrix whose entries are k-variate linear forms) of size n and an integer r, the problem is to find points such that the evaluation of the matrix has rank less than r + 1. The aim of the paper is to obtain the most efficient algorithm to solve this problem. To this end, we give the theoretical and practical complexity of computing Grobner bases of two algebraic formulations of the MinRank problem. Both modelings lead to structured algebraic systems.The first modeling, proposed by Kipnis and Shamir generates bi-homogeneous equations of bi-degree (1, 1). The second one is classically obtained by the vanishing of the (r + 1)-minors of the given matrix, giving rise to a determinantal ideal. In both cases, under genericity assumptions on the entries of the considered matrix, we give new bounds on the degree of regularity of the considered ideal which allows us to estimate the complexity of the whole Grobner bases computations. For instance, the exact degree of regularity of the determinantal ideal formulation of a generic well-defined MinRank problem is r(n - r) + 1. We also give optimal degree bounds of the loci of rank defect which are reached under genericity assumptions; the new bounds are much lower than the standard multi-homogeneous Bezout bounds (or mixed volume of Newton polytopes).TAs a by-product, we prove that the generic MinRank problem could be solved in polynomial time in n (when n - r is fixed) as announced in a previous paper of Faugere, Levy-dit-Vehel and Perret. Moreover, using the determinantal ideal formulation, these results are used to break a cryptographic challenge (which was untractable so far) and allow us to evaluate precisely the security of the cryptosystem w.r.t. n, r and k. Our practical results suggest that, up to the software state of the art, this latter formulation is more adapted in the context of Grobner bases computations." @default.
- W1986124084 created "2016-06-24" @default.
- W1986124084 creator A5009219098 @default.
- W1986124084 creator A5048254079 @default.
- W1986124084 creator A5056341371 @default.
- W1986124084 date "2010-07-25" @default.
- W1986124084 modified "2023-09-27" @default.
- W1986124084 title "Computing loci of rank defects of linear matrices using Gröbner bases and applications to cryptology" @default.
- W1986124084 cites W1573673207 @default.
- W1986124084 cites W1849802011 @default.
- W1986124084 cites W1892123666 @default.
- W1986124084 cites W1969557621 @default.
- W1986124084 cites W2038345254 @default.
- W1986124084 cites W2057137249 @default.
- W1986124084 cites W2059522106 @default.
- W1986124084 cites W2066130115 @default.
- W1986124084 cites W2128687423 @default.
- W1986124084 cites W2164838307 @default.
- W1986124084 cites W4230474807 @default.
- W1986124084 cites W4230703177 @default.
- W1986124084 cites W4250550876 @default.
- W1986124084 doi "https://doi.org/10.1145/1837934.1837984" @default.
- W1986124084 hasPublicationYear "2010" @default.
- W1986124084 type Work @default.
- W1986124084 sameAs 1986124084 @default.
- W1986124084 citedByCount "65" @default.
- W1986124084 countsByYear W19861240842012 @default.
- W1986124084 countsByYear W19861240842013 @default.
- W1986124084 countsByYear W19861240842014 @default.
- W1986124084 countsByYear W19861240842015 @default.
- W1986124084 countsByYear W19861240842016 @default.
- W1986124084 countsByYear W19861240842017 @default.
- W1986124084 countsByYear W19861240842018 @default.
- W1986124084 countsByYear W19861240842019 @default.
- W1986124084 countsByYear W19861240842020 @default.
- W1986124084 countsByYear W19861240842021 @default.
- W1986124084 countsByYear W19861240842022 @default.
- W1986124084 countsByYear W19861240842023 @default.
- W1986124084 crossrefType "proceedings-article" @default.
- W1986124084 hasAuthorship W1986124084A5009219098 @default.
- W1986124084 hasAuthorship W1986124084A5048254079 @default.
- W1986124084 hasAuthorship W1986124084A5056341371 @default.
- W1986124084 hasConcept C11413529 @default.
- W1986124084 hasConcept C114614502 @default.
- W1986124084 hasConcept C164226766 @default.
- W1986124084 hasConcept C178489894 @default.
- W1986124084 hasConcept C33923547 @default.
- W1986124084 hasConcept C41008148 @default.
- W1986124084 hasConcept C80444323 @default.
- W1986124084 hasConceptScore W1986124084C11413529 @default.
- W1986124084 hasConceptScore W1986124084C114614502 @default.
- W1986124084 hasConceptScore W1986124084C164226766 @default.
- W1986124084 hasConceptScore W1986124084C178489894 @default.
- W1986124084 hasConceptScore W1986124084C33923547 @default.
- W1986124084 hasConceptScore W1986124084C41008148 @default.
- W1986124084 hasConceptScore W1986124084C80444323 @default.
- W1986124084 hasLocation W19861240841 @default.
- W1986124084 hasLocation W19861240842 @default.
- W1986124084 hasOpenAccess W1986124084 @default.
- W1986124084 hasPrimaryLocation W19861240841 @default.
- W1986124084 hasRelatedWork W1989925552 @default.
- W1986124084 hasRelatedWork W2025511434 @default.
- W1986124084 hasRelatedWork W2044496651 @default.
- W1986124084 hasRelatedWork W2050801211 @default.
- W1986124084 hasRelatedWork W2055916644 @default.
- W1986124084 hasRelatedWork W2783911801 @default.
- W1986124084 hasRelatedWork W2952285051 @default.
- W1986124084 hasRelatedWork W2963179930 @default.
- W1986124084 hasRelatedWork W3118068154 @default.
- W1986124084 hasRelatedWork W4234996786 @default.
- W1986124084 isParatext "false" @default.
- W1986124084 isRetracted "false" @default.
- W1986124084 magId "1986124084" @default.
- W1986124084 workType "article" @default.