Matches in SemOpenAlex for { <https://semopenalex.org/work/W1986136105> ?p ?o ?g. }
- W1986136105 endingPage "433" @default.
- W1986136105 startingPage "407" @default.
- W1986136105 abstract "A plane, chemically reacting jet of fuel injected through a narrow spanwise slot into supersonic and fully turbulent air flow in a channel with isothermal, parallel walls is investigated using a semi-implicit large-eddy simulation technique. It is based on a variant of the approximate deconvolution method (ADM) proposed by Mathew et al. (2003 Mathew, J. 2003. An explicit filtering method for LES of compressible flows. Physics of Fluids, 15(8): 2279–2289. [Crossref], [Web of Science ®] , [Google Scholar]; An explicit filtering method for LES of compressible flows. Physics of Fluids, 15 (8), 2279–2289) and on explicit modelling of the filtered heat release term. The fuel jet consists of a mixture of H2 and N2, the mass fractions being Y H2 = 0.016875 and Y N2 = 0.983125, respectively. Chemical reaction of H2 and O2 to water is modelled as an infinitely fast, irreversible one-step reaction. The composition is described by a mixture fraction ξ evolving according to a transport equation for a passive scalar, which is solved along with the compressible Navier–Stokes equations. A ratio of slot width to channel height of h 2/h 1 = 1/32 characterises the geometric configuration. Spatial derivatives are computed using a tridiagonal finite-difference scheme of sixth order of accuracy given by Lele (1992 Lele, S. K. 1992. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103: 16–42. [Crossref], [Web of Science ®] , [Google Scholar]; Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103, 16–42), while an explicit five-step Runge–Kutta algorithm by Kennedy et al. (1999 Kennedy, C. A., Carpenter, M. and Lewis, R. 1999. Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations Technical report 99-22, ICASE. Hampton, VA: Langley Research Center [Google Scholar]; Low-storage, explicit Runge–Kutta schemes for the compressible Navier–Stokes equations. Technical report 99–22, ICASE.) is used for time integration. Turbulent inflow conditions are generated by a separate LES of fully developed supersonic channel flow at a bulk Mach number of M = 3.1 and a friction Reynolds number of Re τ ≈ 456 and introduced well upstream of the injection station using characteristic boundary conditions. The complex transport processes of mass, momentum and energy in the neighbourhood of the injection region are documented by snapshots of instantaneous flow variables and by profiles and contour plots of statistically averaged quantities." @default.
- W1986136105 created "2016-06-24" @default.
- W1986136105 creator A5017828967 @default.
- W1986136105 creator A5053316158 @default.
- W1986136105 date "2010-12-01" @default.
- W1986136105 modified "2023-09-25" @default.
- W1986136105 title "Large-eddy simulation of a plane reacting jet transversely injected into supersonic turbulent channel flow" @default.
- W1986136105 cites W1629535452 @default.
- W1986136105 cites W1964103910 @default.
- W1986136105 cites W1966525203 @default.
- W1986136105 cites W1969731295 @default.
- W1986136105 cites W1970212576 @default.
- W1986136105 cites W1978617162 @default.
- W1986136105 cites W198028628 @default.
- W1986136105 cites W1985427636 @default.
- W1986136105 cites W1993994399 @default.
- W1986136105 cites W1994222686 @default.
- W1986136105 cites W2000487766 @default.
- W1986136105 cites W2007686712 @default.
- W1986136105 cites W2010547669 @default.
- W1986136105 cites W2017766187 @default.
- W1986136105 cites W2020278801 @default.
- W1986136105 cites W2021112977 @default.
- W1986136105 cites W2021273376 @default.
- W1986136105 cites W2021912354 @default.
- W1986136105 cites W2023956526 @default.
- W1986136105 cites W2028314523 @default.
- W1986136105 cites W2029590151 @default.
- W1986136105 cites W2043046604 @default.
- W1986136105 cites W2046071884 @default.
- W1986136105 cites W2060796793 @default.
- W1986136105 cites W2061829258 @default.
- W1986136105 cites W2067157953 @default.
- W1986136105 cites W2068635951 @default.
- W1986136105 cites W2078582498 @default.
- W1986136105 cites W2078644903 @default.
- W1986136105 cites W2082713279 @default.
- W1986136105 cites W2084637929 @default.
- W1986136105 cites W2091139949 @default.
- W1986136105 cites W2091345137 @default.
- W1986136105 cites W2091410588 @default.
- W1986136105 cites W2100332121 @default.
- W1986136105 cites W2103606462 @default.
- W1986136105 cites W2104554711 @default.
- W1986136105 cites W2104674399 @default.
- W1986136105 cites W2104921236 @default.
- W1986136105 cites W2111597291 @default.
- W1986136105 cites W2122177687 @default.
- W1986136105 cites W2126884453 @default.
- W1986136105 cites W2135483806 @default.
- W1986136105 cites W2149176764 @default.
- W1986136105 cites W2149674609 @default.
- W1986136105 cites W2159515064 @default.
- W1986136105 cites W2281505649 @default.
- W1986136105 cites W2326571101 @default.
- W1986136105 cites W2327865412 @default.
- W1986136105 cites W2334772160 @default.
- W1986136105 doi "https://doi.org/10.1080/10618562.2010.533121" @default.
- W1986136105 hasPublicationYear "2010" @default.
- W1986136105 type Work @default.
- W1986136105 sameAs 1986136105 @default.
- W1986136105 citedByCount "4" @default.
- W1986136105 countsByYear W19861361052012 @default.
- W1986136105 countsByYear W19861361052016 @default.
- W1986136105 countsByYear W19861361052019 @default.
- W1986136105 countsByYear W19861361052020 @default.
- W1986136105 crossrefType "journal-article" @default.
- W1986136105 hasAuthorship W1986136105A5017828967 @default.
- W1986136105 hasAuthorship W1986136105A5053316158 @default.
- W1986136105 hasConcept C119947313 @default.
- W1986136105 hasConcept C121332964 @default.
- W1986136105 hasConcept C121448008 @default.
- W1986136105 hasConcept C134306372 @default.
- W1986136105 hasConcept C17825722 @default.
- W1986136105 hasConcept C181330731 @default.
- W1986136105 hasConcept C196558001 @default.
- W1986136105 hasConcept C205951836 @default.
- W1986136105 hasConcept C205991772 @default.
- W1986136105 hasConcept C2524010 @default.
- W1986136105 hasConcept C2780829570 @default.
- W1986136105 hasConcept C33923547 @default.
- W1986136105 hasConcept C5192115 @default.
- W1986136105 hasConcept C57691317 @default.
- W1986136105 hasConcept C57879066 @default.
- W1986136105 hasConcept C84655787 @default.
- W1986136105 hasConcept C97355855 @default.
- W1986136105 hasConceptScore W1986136105C119947313 @default.
- W1986136105 hasConceptScore W1986136105C121332964 @default.
- W1986136105 hasConceptScore W1986136105C121448008 @default.
- W1986136105 hasConceptScore W1986136105C134306372 @default.
- W1986136105 hasConceptScore W1986136105C17825722 @default.
- W1986136105 hasConceptScore W1986136105C181330731 @default.
- W1986136105 hasConceptScore W1986136105C196558001 @default.
- W1986136105 hasConceptScore W1986136105C205951836 @default.
- W1986136105 hasConceptScore W1986136105C205991772 @default.
- W1986136105 hasConceptScore W1986136105C2524010 @default.
- W1986136105 hasConceptScore W1986136105C2780829570 @default.
- W1986136105 hasConceptScore W1986136105C33923547 @default.