Matches in SemOpenAlex for { <https://semopenalex.org/work/W1986248626> ?p ?o ?g. }
- W1986248626 endingPage "12086" @default.
- W1986248626 startingPage "12078" @default.
- W1986248626 abstract "The fundamental process of protein self-assembly is governed by protein-protein interactions between subunits, which combine to form structures that are often on the nano-scale. The nano-cage protein, bacterioferritin from Escherichia coli, a maxi-ferritin made up of 24 subunits, was chosen as the basis for an alanine-shaving mutagenesis study to discover key amino acid residues at symmetry-related protein-protein interfaces that control protein stability and self-assembly. By inspection of these interfaces and “virtual alanine scanning,” nine mutants were designed, expressed, purified, and characterized using transmission electron microscopy, size exclusion chromatography, dynamic light scattering, native PAGE, and temperature-dependent CD. Many of the selected amino acids act as hot spot residues. Four of these (Arg-30, which is located at the two-fold axis, and Arg-61, Tyr-114, and Glu-128, which are located at the three-fold axis), when individually mutated to alanine, completely shut down detectable solution formation of 24-mer, favoring a cooperatively folded dimer, suggesting that they may be oligomerization “switch residues.” Furthermore, two residues, Arg-30 and Arg-61, when changed to alanine form mutants that are more thermodynamically stable than the native protein. This investigation into the structure and energetics of this self-assembling nano-cage protein not only can act as a jumping off point for the eventual design of novel protein nano-structures but can also help to understand the role that structure plays on the function of this important class of proteins. The fundamental process of protein self-assembly is governed by protein-protein interactions between subunits, which combine to form structures that are often on the nano-scale. The nano-cage protein, bacterioferritin from Escherichia coli, a maxi-ferritin made up of 24 subunits, was chosen as the basis for an alanine-shaving mutagenesis study to discover key amino acid residues at symmetry-related protein-protein interfaces that control protein stability and self-assembly. By inspection of these interfaces and “virtual alanine scanning,” nine mutants were designed, expressed, purified, and characterized using transmission electron microscopy, size exclusion chromatography, dynamic light scattering, native PAGE, and temperature-dependent CD. Many of the selected amino acids act as hot spot residues. Four of these (Arg-30, which is located at the two-fold axis, and Arg-61, Tyr-114, and Glu-128, which are located at the three-fold axis), when individually mutated to alanine, completely shut down detectable solution formation of 24-mer, favoring a cooperatively folded dimer, suggesting that they may be oligomerization “switch residues.” Furthermore, two residues, Arg-30 and Arg-61, when changed to alanine form mutants that are more thermodynamically stable than the native protein. This investigation into the structure and energetics of this self-assembling nano-cage protein not only can act as a jumping off point for the eventual design of novel protein nano-structures but can also help to understand the role that structure plays on the function of this important class of proteins." @default.
- W1986248626 created "2016-06-24" @default.
- W1986248626 creator A5006017581 @default.
- W1986248626 creator A5012100665 @default.
- W1986248626 creator A5028692517 @default.
- W1986248626 creator A5033641993 @default.
- W1986248626 creator A5048224258 @default.
- W1986248626 creator A5063077523 @default.
- W1986248626 creator A5085947862 @default.
- W1986248626 date "2010-04-01" @default.
- W1986248626 modified "2023-09-28" @default.
- W1986248626 title "Alanine-shaving Mutagenesis to Determine Key Interfacial Residues Governing the Assembly of a Nano-cage Maxi-ferritin" @default.
- W1986248626 cites W102855485 @default.
- W1986248626 cites W1589564633 @default.
- W1986248626 cites W1965707763 @default.
- W1986248626 cites W1966381151 @default.
- W1986248626 cites W1982485870 @default.
- W1986248626 cites W1982669236 @default.
- W1986248626 cites W1983917758 @default.
- W1986248626 cites W1988985595 @default.
- W1986248626 cites W1999390565 @default.
- W1986248626 cites W2002347040 @default.
- W1986248626 cites W2007272508 @default.
- W1986248626 cites W2011838528 @default.
- W1986248626 cites W20120559 @default.
- W1986248626 cites W2013988051 @default.
- W1986248626 cites W2022022844 @default.
- W1986248626 cites W2022477691 @default.
- W1986248626 cites W2027836768 @default.
- W1986248626 cites W2042655455 @default.
- W1986248626 cites W2051077286 @default.
- W1986248626 cites W2051710717 @default.
- W1986248626 cites W2056263210 @default.
- W1986248626 cites W2062061048 @default.
- W1986248626 cites W2065711381 @default.
- W1986248626 cites W2066003180 @default.
- W1986248626 cites W2069223176 @default.
- W1986248626 cites W2073527119 @default.
- W1986248626 cites W2074298176 @default.
- W1986248626 cites W2079495753 @default.
- W1986248626 cites W2082287275 @default.
- W1986248626 cites W2085024871 @default.
- W1986248626 cites W2087670364 @default.
- W1986248626 cites W2090265120 @default.
- W1986248626 cites W2095338416 @default.
- W1986248626 cites W2098123600 @default.
- W1986248626 cites W2106699885 @default.
- W1986248626 cites W2118902880 @default.
- W1986248626 cites W2127558534 @default.
- W1986248626 cites W2133385897 @default.
- W1986248626 cites W2136206140 @default.
- W1986248626 cites W2148926695 @default.
- W1986248626 cites W2150192011 @default.
- W1986248626 cites W2171919355 @default.
- W1986248626 cites W2344831380 @default.
- W1986248626 cites W2401829918 @default.
- W1986248626 cites W4248743219 @default.
- W1986248626 doi "https://doi.org/10.1074/jbc.m109.092445" @default.
- W1986248626 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/2852946" @default.
- W1986248626 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20139406" @default.
- W1986248626 hasPublicationYear "2010" @default.
- W1986248626 type Work @default.
- W1986248626 sameAs 1986248626 @default.
- W1986248626 citedByCount "44" @default.
- W1986248626 countsByYear W19862486262012 @default.
- W1986248626 countsByYear W19862486262013 @default.
- W1986248626 countsByYear W19862486262014 @default.
- W1986248626 countsByYear W19862486262015 @default.
- W1986248626 countsByYear W19862486262016 @default.
- W1986248626 countsByYear W19862486262017 @default.
- W1986248626 countsByYear W19862486262018 @default.
- W1986248626 countsByYear W19862486262019 @default.
- W1986248626 countsByYear W19862486262020 @default.
- W1986248626 countsByYear W19862486262021 @default.
- W1986248626 countsByYear W19862486262022 @default.
- W1986248626 countsByYear W19862486262023 @default.
- W1986248626 crossrefType "journal-article" @default.
- W1986248626 hasAuthorship W1986248626A5006017581 @default.
- W1986248626 hasAuthorship W1986248626A5012100665 @default.
- W1986248626 hasAuthorship W1986248626A5028692517 @default.
- W1986248626 hasAuthorship W1986248626A5033641993 @default.
- W1986248626 hasAuthorship W1986248626A5048224258 @default.
- W1986248626 hasAuthorship W1986248626A5063077523 @default.
- W1986248626 hasAuthorship W1986248626A5085947862 @default.
- W1986248626 hasBestOaLocation W19862486261 @default.
- W1986248626 hasConcept C104317684 @default.
- W1986248626 hasConcept C12554922 @default.
- W1986248626 hasConcept C143065580 @default.
- W1986248626 hasConcept C147816474 @default.
- W1986248626 hasConcept C16318435 @default.
- W1986248626 hasConcept C181199279 @default.
- W1986248626 hasConcept C185592680 @default.
- W1986248626 hasConcept C2779856020 @default.
- W1986248626 hasConcept C2780227090 @default.
- W1986248626 hasConcept C47701112 @default.
- W1986248626 hasConcept C515207424 @default.
- W1986248626 hasConcept C55493867 @default.
- W1986248626 hasConcept C8010536 @default.