Matches in SemOpenAlex for { <https://semopenalex.org/work/W1986258649> ?p ?o ?g. }
- W1986258649 endingPage "036001" @default.
- W1986258649 startingPage "036001" @default.
- W1986258649 abstract "The numerical simulation of an insect-sized 'X-wing' type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices' breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar to one of the spanwise studies, but the efficiency result contradicts it, indicating that other flapping parameters are involved as well. Results from this study provide a deeper understanding of the underlying aerodynamics of the X-wing type, which will help to improve the performance of insect-sized FMAVs using this unique configuration." @default.
- W1986258649 created "2016-06-24" @default.
- W1986258649 creator A5009582346 @default.
- W1986258649 creator A5057282824 @default.
- W1986258649 creator A5085925216 @default.
- W1986258649 date "2014-03-03" @default.
- W1986258649 modified "2023-09-25" @default.
- W1986258649 title "Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method" @default.
- W1986258649 cites W1910119307 @default.
- W1986258649 cites W1963752367 @default.
- W1986258649 cites W1964268471 @default.
- W1986258649 cites W1965705114 @default.
- W1986258649 cites W1982757730 @default.
- W1986258649 cites W1997815093 @default.
- W1986258649 cites W2003172346 @default.
- W1986258649 cites W2015191356 @default.
- W1986258649 cites W2026253729 @default.
- W1986258649 cites W2029976533 @default.
- W1986258649 cites W2034434606 @default.
- W1986258649 cites W2042925054 @default.
- W1986258649 cites W2045779500 @default.
- W1986258649 cites W2051788799 @default.
- W1986258649 cites W2054336896 @default.
- W1986258649 cites W2057770582 @default.
- W1986258649 cites W2058301737 @default.
- W1986258649 cites W2061491403 @default.
- W1986258649 cites W2063852871 @default.
- W1986258649 cites W2064523296 @default.
- W1986258649 cites W2067507852 @default.
- W1986258649 cites W2067761052 @default.
- W1986258649 cites W2067909757 @default.
- W1986258649 cites W2069414577 @default.
- W1986258649 cites W2078830994 @default.
- W1986258649 cites W2088134316 @default.
- W1986258649 cites W2098920641 @default.
- W1986258649 cites W2110801286 @default.
- W1986258649 cites W2115725580 @default.
- W1986258649 cites W2124951605 @default.
- W1986258649 cites W2126476514 @default.
- W1986258649 cites W2134356027 @default.
- W1986258649 cites W2145851836 @default.
- W1986258649 cites W2146385201 @default.
- W1986258649 cites W2150278160 @default.
- W1986258649 cites W2162588022 @default.
- W1986258649 cites W2168981970 @default.
- W1986258649 cites W2246911093 @default.
- W1986258649 cites W2315879387 @default.
- W1986258649 doi "https://doi.org/10.1088/1748-3182/9/3/036001" @default.
- W1986258649 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24584155" @default.
- W1986258649 hasPublicationYear "2014" @default.
- W1986258649 type Work @default.
- W1986258649 sameAs 1986258649 @default.
- W1986258649 citedByCount "16" @default.
- W1986258649 countsByYear W19862586492014 @default.
- W1986258649 countsByYear W19862586492015 @default.
- W1986258649 countsByYear W19862586492016 @default.
- W1986258649 countsByYear W19862586492017 @default.
- W1986258649 countsByYear W19862586492018 @default.
- W1986258649 countsByYear W19862586492021 @default.
- W1986258649 countsByYear W19862586492022 @default.
- W1986258649 countsByYear W19862586492023 @default.
- W1986258649 crossrefType "journal-article" @default.
- W1986258649 hasAuthorship W1986258649A5009582346 @default.
- W1986258649 hasAuthorship W1986258649A5057282824 @default.
- W1986258649 hasAuthorship W1986258649A5085925216 @default.
- W1986258649 hasConcept C107779570 @default.
- W1986258649 hasConcept C120314980 @default.
- W1986258649 hasConcept C121332964 @default.
- W1986258649 hasConcept C121704545 @default.
- W1986258649 hasConcept C127413603 @default.
- W1986258649 hasConcept C13393347 @default.
- W1986258649 hasConcept C134306372 @default.
- W1986258649 hasConcept C137990359 @default.
- W1986258649 hasConcept C146978453 @default.
- W1986258649 hasConcept C17733824 @default.
- W1986258649 hasConcept C182748727 @default.
- W1986258649 hasConcept C194147245 @default.
- W1986258649 hasConcept C196558001 @default.
- W1986258649 hasConcept C2524010 @default.
- W1986258649 hasConcept C2777314717 @default.
- W1986258649 hasConcept C2780444116 @default.
- W1986258649 hasConcept C33923547 @default.
- W1986258649 hasConcept C41008148 @default.
- W1986258649 hasConcept C527307 @default.
- W1986258649 hasConcept C57879066 @default.
- W1986258649 hasConcept C62354387 @default.
- W1986258649 hasConcept C79420006 @default.
- W1986258649 hasConcept C86811826 @default.
- W1986258649 hasConcept C91158637 @default.
- W1986258649 hasConcept C97257150 @default.
- W1986258649 hasConceptScore W1986258649C107779570 @default.
- W1986258649 hasConceptScore W1986258649C120314980 @default.
- W1986258649 hasConceptScore W1986258649C121332964 @default.
- W1986258649 hasConceptScore W1986258649C121704545 @default.
- W1986258649 hasConceptScore W1986258649C127413603 @default.
- W1986258649 hasConceptScore W1986258649C13393347 @default.
- W1986258649 hasConceptScore W1986258649C134306372 @default.
- W1986258649 hasConceptScore W1986258649C137990359 @default.