Matches in SemOpenAlex for { <https://semopenalex.org/work/W1986263670> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1986263670 endingPage "332" @default.
- W1986263670 startingPage "297" @default.
- W1986263670 abstract "Let <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finite group, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=f colon upper G right-arrow bold upper C> <mml:semantics> <mml:mrow> <mml:mi>f</mml:mi> <mml:mo>:</mml:mo> <mml:mi>G</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi mathvariant=bold>C</mml:mi> </mml:mrow> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>f:G to {mathbf {C}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> a function, and <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=rho> <mml:semantics> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:annotation encoding=application/x-tex>rho</mml:annotation> </mml:semantics> </mml:math> </inline-formula> an irreducible representation of <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper G> <mml:semantics> <mml:mi>G</mml:mi> <mml:annotation encoding=application/x-tex>G</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. The Fourier transform is defined as <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=ModifyingAbove f With caret left-parenthesis rho right-parenthesis equals normal upper Sigma Subscript s element-of upper G Baseline f left-parenthesis s right-parenthesis rho left-parenthesis s right-parenthesis> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mover> <mml:mi>f</mml:mi> <mml:mo stretchy=false>^<!-- ^ --></mml:mo> </mml:mover> </mml:mrow> <mml:mo stretchy=false>(</mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi mathvariant=normal>Σ<!-- Σ --></mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>s</mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:mi>G</mml:mi> </mml:mrow> </mml:msub> </mml:mrow> <mml:mi>f</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mi>ρ<!-- ρ --></mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>s</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>hat f(rho ) = {Sigma _{s in G}}f(s)rho (s)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Direct computation for all irreducible representations involves order <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=StartAbsoluteValue upper G EndAbsoluteValue squared> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mrow> <mml:mo>|</mml:mo> <mml:mi>G</mml:mi> <mml:mo>|</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{left | G right |^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> operations. We derive fast algorithms and develop them for the symmetric group <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript n> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{S_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. There, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=left-parenthesis n factorial right-parenthesis squared> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>!</mml:mo> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mn>2</mml:mn> </mml:msup> </mml:mrow> <mml:annotation encoding=application/x-tex>{(n!)^2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is reduced to <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n left-parenthesis n factorial right-parenthesis Superscript a slash 2> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo stretchy=false>(</mml:mo> <mml:mi>n</mml:mi> <mml:mo>!</mml:mo> <mml:msup> <mml:mo stretchy=false>)</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>a</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msup> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>n{(n!)^{a/2}}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=a> <mml:semantics> <mml:mi>a</mml:mi> <mml:annotation encoding=application/x-tex>a</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the constant for matrix multiplication (2.38 as of this writing). Variations of the algorithm allow efficient computation for “small” representations. A practical version of the algorithm is given on <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper S Subscript n> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>S</mml:mi> <mml:mi>n</mml:mi> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{S_n}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Numerical evidence is presented to show a speedup by a factor of 100 for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=n equals 9> <mml:semantics> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>=</mml:mo> <mml:mn>9</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>n = 9</mml:annotation> </mml:semantics> </mml:math> </inline-formula>." @default.
- W1986263670 created "2016-06-24" @default.
- W1986263670 creator A5050449040 @default.
- W1986263670 creator A5072455364 @default.
- W1986263670 date "1990-01-01" @default.
- W1986263670 modified "2023-09-25" @default.
- W1986263670 title "Efficient computation of the Fourier transform on finite groups" @default.
- W1986263670 cites W1538508619 @default.
- W1986263670 cites W1551972025 @default.
- W1986263670 cites W1596185498 @default.
- W1986263670 cites W1964153492 @default.
- W1986263670 cites W1965748512 @default.
- W1986263670 cites W1967762078 @default.
- W1986263670 cites W1971407031 @default.
- W1986263670 cites W2011598702 @default.
- W1986263670 cites W2013378760 @default.
- W1986263670 cites W2026411617 @default.
- W1986263670 cites W2040077566 @default.
- W1986263670 cites W2040878416 @default.
- W1986263670 cites W2050039992 @default.
- W1986263670 cites W2056389572 @default.
- W1986263670 cites W2069384709 @default.
- W1986263670 cites W2080063509 @default.
- W1986263670 cites W2092852220 @default.
- W1986263670 cites W2093304749 @default.
- W1986263670 cites W2125647096 @default.
- W1986263670 cites W2126663111 @default.
- W1986263670 cites W2129239408 @default.
- W1986263670 cites W2904838066 @default.
- W1986263670 cites W3021709410 @default.
- W1986263670 cites W4214684581 @default.
- W1986263670 cites W4231896027 @default.
- W1986263670 cites W4239086625 @default.
- W1986263670 cites W4254389654 @default.
- W1986263670 cites W4256284582 @default.
- W1986263670 cites W637655573 @default.
- W1986263670 doi "https://doi.org/10.1090/s0894-0347-1990-1030655-4" @default.
- W1986263670 hasPublicationYear "1990" @default.
- W1986263670 type Work @default.
- W1986263670 sameAs 1986263670 @default.
- W1986263670 citedByCount "50" @default.
- W1986263670 countsByYear W19862636702013 @default.
- W1986263670 countsByYear W19862636702014 @default.
- W1986263670 countsByYear W19862636702015 @default.
- W1986263670 countsByYear W19862636702016 @default.
- W1986263670 countsByYear W19862636702017 @default.
- W1986263670 countsByYear W19862636702018 @default.
- W1986263670 countsByYear W19862636702019 @default.
- W1986263670 countsByYear W19862636702020 @default.
- W1986263670 countsByYear W19862636702022 @default.
- W1986263670 crossrefType "journal-article" @default.
- W1986263670 hasAuthorship W1986263670A5050449040 @default.
- W1986263670 hasAuthorship W1986263670A5072455364 @default.
- W1986263670 hasBestOaLocation W19862636701 @default.
- W1986263670 hasConcept C11413529 @default.
- W1986263670 hasConcept C154945302 @default.
- W1986263670 hasConcept C2776321320 @default.
- W1986263670 hasConcept C33923547 @default.
- W1986263670 hasConcept C41008148 @default.
- W1986263670 hasConceptScore W1986263670C11413529 @default.
- W1986263670 hasConceptScore W1986263670C154945302 @default.
- W1986263670 hasConceptScore W1986263670C2776321320 @default.
- W1986263670 hasConceptScore W1986263670C33923547 @default.
- W1986263670 hasConceptScore W1986263670C41008148 @default.
- W1986263670 hasIssue "2" @default.
- W1986263670 hasLocation W19862636701 @default.
- W1986263670 hasOpenAccess W1986263670 @default.
- W1986263670 hasPrimaryLocation W19862636701 @default.
- W1986263670 hasRelatedWork W1490908374 @default.
- W1986263670 hasRelatedWork W151193258 @default.
- W1986263670 hasRelatedWork W1529400504 @default.
- W1986263670 hasRelatedWork W1607472309 @default.
- W1986263670 hasRelatedWork W1871911958 @default.
- W1986263670 hasRelatedWork W1892467659 @default.
- W1986263670 hasRelatedWork W2808586768 @default.
- W1986263670 hasRelatedWork W2998403542 @default.
- W1986263670 hasRelatedWork W3107474891 @default.
- W1986263670 hasRelatedWork W38394648 @default.
- W1986263670 hasVolume "3" @default.
- W1986263670 isParatext "false" @default.
- W1986263670 isRetracted "false" @default.
- W1986263670 magId "1986263670" @default.
- W1986263670 workType "article" @default.