Matches in SemOpenAlex for { <https://semopenalex.org/work/W1986273313> ?p ?o ?g. }
- W1986273313 abstract "Efficient dimensionality reduction can involve generative latent variable models such as probabilistic principal component analysis (PPCA) or independent component analysis (ICA). Such models aim to extract a reduced set of variables (latent variables) from the original ones. In most cases, the learning of these models occur within an unsupervised framework where only unlabeled samples are used. In this paper, we investigate the possibility of estimating an independent factor analysis model (IFA), and thus projecting original data onto a lower dimensional space, when prior knowledge on the cluster membership of some training samples is incorporated. We propose to allow this model to learn within a semi-supervised framework in which likelihood of both labeled and unlabeled samples is maximized by a generalized expectation-maximization (GEM) algorithm. Experimental results with real data sets are provided to demonstrate the ability of our approach to find a low dimensional manifold with good explanatory power." @default.
- W1986273313 created "2016-06-24" @default.
- W1986273313 creator A5011761326 @default.
- W1986273313 creator A5029516915 @default.
- W1986273313 creator A5052312255 @default.
- W1986273313 creator A5087274722 @default.
- W1986273313 date "2011-12-01" @default.
- W1986273313 modified "2023-10-16" @default.
- W1986273313 title "Semi-supervised Feature Extraction Using Independent Factor Analysis" @default.
- W1986273313 cites W1489793438 @default.
- W1986273313 cites W1548802052 @default.
- W1986273313 cites W1568794265 @default.
- W1986273313 cites W1595305404 @default.
- W1986273313 cites W1602102683 @default.
- W1986273313 cites W1770825568 @default.
- W1986273313 cites W1792341371 @default.
- W1986273313 cites W1964724001 @default.
- W1986273313 cites W1990517717 @default.
- W1986273313 cites W2005513878 @default.
- W1986273313 cites W2021735569 @default.
- W1986273313 cites W2042122853 @default.
- W1986273313 cites W2049633694 @default.
- W1986273313 cites W2060542838 @default.
- W1986273313 cites W2065017893 @default.
- W1986273313 cites W2070078625 @default.
- W1986273313 cites W2072620639 @default.
- W1986273313 cites W2084272813 @default.
- W1986273313 cites W2101303708 @default.
- W1986273313 cites W2104836915 @default.
- W1986273313 cites W2108384452 @default.
- W1986273313 cites W2113751382 @default.
- W1986273313 cites W2117853077 @default.
- W1986273313 cites W2123921160 @default.
- W1986273313 cites W2128314196 @default.
- W1986273313 cites W2133069808 @default.
- W1986273313 cites W2133487567 @default.
- W1986273313 cites W2134242197 @default.
- W1986273313 cites W2135346934 @default.
- W1986273313 cites W2135508918 @default.
- W1986273313 cites W2137969290 @default.
- W1986273313 cites W2148694408 @default.
- W1986273313 cites W2152820192 @default.
- W1986273313 cites W2156452366 @default.
- W1986273313 cites W2595142274 @default.
- W1986273313 cites W2795528501 @default.
- W1986273313 cites W2797148637 @default.
- W1986273313 cites W3029645440 @default.
- W1986273313 cites W425684851 @default.
- W1986273313 doi "https://doi.org/10.1109/icmla.2011.183" @default.
- W1986273313 hasPublicationYear "2011" @default.
- W1986273313 type Work @default.
- W1986273313 sameAs 1986273313 @default.
- W1986273313 citedByCount "0" @default.
- W1986273313 crossrefType "proceedings-article" @default.
- W1986273313 hasAuthorship W1986273313A5011761326 @default.
- W1986273313 hasAuthorship W1986273313A5029516915 @default.
- W1986273313 hasAuthorship W1986273313A5052312255 @default.
- W1986273313 hasAuthorship W1986273313A5087274722 @default.
- W1986273313 hasBestOaLocation W19862733132 @default.
- W1986273313 hasConcept C105795698 @default.
- W1986273313 hasConcept C10879293 @default.
- W1986273313 hasConcept C111030470 @default.
- W1986273313 hasConcept C112933361 @default.
- W1986273313 hasConcept C114289077 @default.
- W1986273313 hasConcept C119857082 @default.
- W1986273313 hasConcept C153180895 @default.
- W1986273313 hasConcept C154945302 @default.
- W1986273313 hasConcept C167966045 @default.
- W1986273313 hasConcept C182081679 @default.
- W1986273313 hasConcept C27438332 @default.
- W1986273313 hasConcept C33923547 @default.
- W1986273313 hasConcept C39890363 @default.
- W1986273313 hasConcept C41008148 @default.
- W1986273313 hasConcept C49781872 @default.
- W1986273313 hasConcept C49937458 @default.
- W1986273313 hasConcept C51167844 @default.
- W1986273313 hasConcept C51432778 @default.
- W1986273313 hasConcept C65965080 @default.
- W1986273313 hasConcept C70518039 @default.
- W1986273313 hasConcept C8038995 @default.
- W1986273313 hasConceptScore W1986273313C105795698 @default.
- W1986273313 hasConceptScore W1986273313C10879293 @default.
- W1986273313 hasConceptScore W1986273313C111030470 @default.
- W1986273313 hasConceptScore W1986273313C112933361 @default.
- W1986273313 hasConceptScore W1986273313C114289077 @default.
- W1986273313 hasConceptScore W1986273313C119857082 @default.
- W1986273313 hasConceptScore W1986273313C153180895 @default.
- W1986273313 hasConceptScore W1986273313C154945302 @default.
- W1986273313 hasConceptScore W1986273313C167966045 @default.
- W1986273313 hasConceptScore W1986273313C182081679 @default.
- W1986273313 hasConceptScore W1986273313C27438332 @default.
- W1986273313 hasConceptScore W1986273313C33923547 @default.
- W1986273313 hasConceptScore W1986273313C39890363 @default.
- W1986273313 hasConceptScore W1986273313C41008148 @default.
- W1986273313 hasConceptScore W1986273313C49781872 @default.
- W1986273313 hasConceptScore W1986273313C49937458 @default.
- W1986273313 hasConceptScore W1986273313C51167844 @default.
- W1986273313 hasConceptScore W1986273313C51432778 @default.
- W1986273313 hasConceptScore W1986273313C65965080 @default.
- W1986273313 hasConceptScore W1986273313C70518039 @default.