Matches in SemOpenAlex for { <https://semopenalex.org/work/W1986307910> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W1986307910 endingPage "6726" @default.
- W1986307910 startingPage "6721" @default.
- W1986307910 abstract "This paper presents an improved classifier for automated diagnostic systems of electrocardiogram (ECG) arrhythmias. This diagnostic system consists of a combined Fuzzy Clustering Neural Network Algorithm for Classification of ECG Arrhythmias using type-2 fuzzy c-means clustering (T2FCM) algorithm and neural network. Type-2 fuzzy c-means clustering is used to improve performance of neural network. The aim of improving classifier's performance is to constitute the best classification system with high accuracy rate for ECG beats. Ten types of ECG arrhythmias (normal beat, sinus bradycardia, ventricular tachycardia, sinus arrhythmia, atrial premature contraction, paced beat, right bundle branch block, left bundle branch block, atrial fibrillation and atrial flutter) obtained from MIT-BIH database were analyzed. However, the presented structure was tested by experimental ECG records of 92 patients (40 male and 52 female, average age is 39.75+/-19.06). The classification accuracy of an improved classifier in training and testing, namely Type-2 Fuzzy Clustering Neural Network (T2FCNN), was compared with neural network (NN) and fuzzy clustering neural network (FCNN). In T2FCNN architecture, decision making has two stages: forming of the new training set obtained by selection of the best arrhythmia for each arrhythmia class using T2FCM and classification using neural network trained on the new training set. The results are demonstrated that the proposed diagnostic systems achieved high (99%) accuracy rate." @default.
- W1986307910 created "2016-06-24" @default.
- W1986307910 creator A5031552486 @default.
- W1986307910 creator A5036903653 @default.
- W1986307910 creator A5067307790 @default.
- W1986307910 date "2009-04-01" @default.
- W1986307910 modified "2023-10-17" @default.
- W1986307910 title "A novel approach for classification of ECG arrhythmias: Type-2 fuzzy clustering neural network" @default.
- W1986307910 cites W1983658296 @default.
- W1986307910 cites W1988151082 @default.
- W1986307910 cites W2011174648 @default.
- W1986307910 cites W2028117997 @default.
- W1986307910 cites W2034365922 @default.
- W1986307910 cites W2036369250 @default.
- W1986307910 cites W2040820346 @default.
- W1986307910 cites W2042237861 @default.
- W1986307910 cites W2047187509 @default.
- W1986307910 cites W2049804618 @default.
- W1986307910 cites W2076360516 @default.
- W1986307910 cites W2086045666 @default.
- W1986307910 cites W2101603303 @default.
- W1986307910 cites W2132885717 @default.
- W1986307910 cites W2133758648 @default.
- W1986307910 cites W2139182924 @default.
- W1986307910 cites W2153727374 @default.
- W1986307910 cites W2171527822 @default.
- W1986307910 doi "https://doi.org/10.1016/j.eswa.2008.08.028" @default.
- W1986307910 hasPublicationYear "2009" @default.
- W1986307910 type Work @default.
- W1986307910 sameAs 1986307910 @default.
- W1986307910 citedByCount "162" @default.
- W1986307910 countsByYear W19863079102012 @default.
- W1986307910 countsByYear W19863079102013 @default.
- W1986307910 countsByYear W19863079102014 @default.
- W1986307910 countsByYear W19863079102015 @default.
- W1986307910 countsByYear W19863079102016 @default.
- W1986307910 countsByYear W19863079102017 @default.
- W1986307910 countsByYear W19863079102018 @default.
- W1986307910 countsByYear W19863079102019 @default.
- W1986307910 countsByYear W19863079102020 @default.
- W1986307910 countsByYear W19863079102021 @default.
- W1986307910 countsByYear W19863079102022 @default.
- W1986307910 countsByYear W19863079102023 @default.
- W1986307910 crossrefType "journal-article" @default.
- W1986307910 hasAuthorship W1986307910A5031552486 @default.
- W1986307910 hasAuthorship W1986307910A5036903653 @default.
- W1986307910 hasAuthorship W1986307910A5067307790 @default.
- W1986307910 hasConcept C119857082 @default.
- W1986307910 hasConcept C124101348 @default.
- W1986307910 hasConcept C153180895 @default.
- W1986307910 hasConcept C154945302 @default.
- W1986307910 hasConcept C18903297 @default.
- W1986307910 hasConcept C2777299769 @default.
- W1986307910 hasConcept C41008148 @default.
- W1986307910 hasConcept C50644808 @default.
- W1986307910 hasConcept C58166 @default.
- W1986307910 hasConcept C73555534 @default.
- W1986307910 hasConcept C86803240 @default.
- W1986307910 hasConceptScore W1986307910C119857082 @default.
- W1986307910 hasConceptScore W1986307910C124101348 @default.
- W1986307910 hasConceptScore W1986307910C153180895 @default.
- W1986307910 hasConceptScore W1986307910C154945302 @default.
- W1986307910 hasConceptScore W1986307910C18903297 @default.
- W1986307910 hasConceptScore W1986307910C2777299769 @default.
- W1986307910 hasConceptScore W1986307910C41008148 @default.
- W1986307910 hasConceptScore W1986307910C50644808 @default.
- W1986307910 hasConceptScore W1986307910C58166 @default.
- W1986307910 hasConceptScore W1986307910C73555534 @default.
- W1986307910 hasConceptScore W1986307910C86803240 @default.
- W1986307910 hasIssue "3" @default.
- W1986307910 hasLocation W19863079101 @default.
- W1986307910 hasOpenAccess W1986307910 @default.
- W1986307910 hasPrimaryLocation W19863079101 @default.
- W1986307910 hasRelatedWork W1999627569 @default.
- W1986307910 hasRelatedWork W2961085424 @default.
- W1986307910 hasRelatedWork W3046775127 @default.
- W1986307910 hasRelatedWork W4285260836 @default.
- W1986307910 hasRelatedWork W4286629047 @default.
- W1986307910 hasRelatedWork W4306321456 @default.
- W1986307910 hasRelatedWork W4306674287 @default.
- W1986307910 hasRelatedWork W763609066 @default.
- W1986307910 hasRelatedWork W1629725936 @default.
- W1986307910 hasRelatedWork W4224009465 @default.
- W1986307910 hasVolume "36" @default.
- W1986307910 isParatext "false" @default.
- W1986307910 isRetracted "false" @default.
- W1986307910 magId "1986307910" @default.
- W1986307910 workType "article" @default.