Matches in SemOpenAlex for { <https://semopenalex.org/work/W1986592442> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W1986592442 endingPage "819" @default.
- W1986592442 startingPage "819" @default.
- W1986592442 abstract "0.1. This paper arose from an attempt to solve the following problem. Let (g, K) be a Harish-Chandra pair, i.e. g is a complex reductive Lie algebra, and K is an algebraic group with an action K -Aut(g) and an embedding k = Lie K c g, satisfying some standard conditions (see 1.1 below). Let Z be the center of the enveloping algebra U(g) . Fix a regular character 0: Z -C. Let ((g, K) be the category of (g, K)-modules and t,(g, K) c l((g, K) the subcategory consisting of modules annihilated by Ker 0 . Then by the localization theorem this category X (g, K) can be described geometrically. Namely, fix a Borel subalgebra b c g and a dominant weight A corresponding to 0. Consider the algebra D, of twisted differential operators on the flag space X of g. Then X4/g, K) = J((DZ, K), the K-equivariant D,-modules on X. This result allows us to study many properties of Harish-Chandra modules geometrically. But it does not give a geometric interpretation of Ext-groups of modules in t, (g, K). Namely, let M, N E 4t (gi, K). From the point of view of representation theory the interesting objects are Ext.,, (, K) (M, N), the Ext-groups in the category of all (g, K)-modules. But these Ext's do not admit localization since arbitrary (g, K)-modules do not localize. Our main result is a geometric interpretation of these Ext-groups and, more precisely, of the corresponding derived category. Let us describe it. Let to(g, K) c l((g, K) be the subcategory of 0-finite modules. That is, each element m of M E Ito(g, K) is annihilated by some power of Ker 0. Recall the localization for the category to(g, K) (precise definitions will be given later). Let G be the algebraic group of automorphisms of g, H c G a maximal torus, [ = Lie H. The flag variety X has a natural H-monodromic structure X -X. Let At(Dk) denote the category of weakly H-equivariant Dk-modules. Elements of 1#(Dk) are called monodromic D-modules on X." @default.
- W1986592442 created "2016-06-24" @default.
- W1986592442 creator A5006495864 @default.
- W1986592442 creator A5043528297 @default.
- W1986592442 date "1995-01-01" @default.
- W1986592442 modified "2023-10-17" @default.
- W1986592442 title "Localization for derived categories of $(mathfrak{g},K)$-modules" @default.
- W1986592442 cites W136525781 @default.
- W1986592442 cites W1522759831 @default.
- W1986592442 cites W1583674858 @default.
- W1986592442 cites W164589567 @default.
- W1986592442 cites W1976061039 @default.
- W1986592442 cites W2049707341 @default.
- W1986592442 cites W2577114388 @default.
- W1986592442 cites W624050784 @default.
- W1986592442 doi "https://doi.org/10.1090/s0894-0347-1995-1317229-7" @default.
- W1986592442 hasPublicationYear "1995" @default.
- W1986592442 type Work @default.
- W1986592442 sameAs 1986592442 @default.
- W1986592442 citedByCount "16" @default.
- W1986592442 countsByYear W19865924422012 @default.
- W1986592442 countsByYear W19865924422013 @default.
- W1986592442 countsByYear W19865924422015 @default.
- W1986592442 countsByYear W19865924422016 @default.
- W1986592442 countsByYear W19865924422017 @default.
- W1986592442 countsByYear W19865924422019 @default.
- W1986592442 countsByYear W19865924422021 @default.
- W1986592442 crossrefType "journal-article" @default.
- W1986592442 hasAuthorship W1986592442A5006495864 @default.
- W1986592442 hasAuthorship W1986592442A5043528297 @default.
- W1986592442 hasBestOaLocation W19865924421 @default.
- W1986592442 hasConcept C114614502 @default.
- W1986592442 hasConcept C118615104 @default.
- W1986592442 hasConcept C136119220 @default.
- W1986592442 hasConcept C202444582 @default.
- W1986592442 hasConcept C33923547 @default.
- W1986592442 hasConceptScore W1986592442C114614502 @default.
- W1986592442 hasConceptScore W1986592442C118615104 @default.
- W1986592442 hasConceptScore W1986592442C136119220 @default.
- W1986592442 hasConceptScore W1986592442C202444582 @default.
- W1986592442 hasConceptScore W1986592442C33923547 @default.
- W1986592442 hasIssue "4" @default.
- W1986592442 hasLocation W19865924421 @default.
- W1986592442 hasOpenAccess W1986592442 @default.
- W1986592442 hasPrimaryLocation W19865924421 @default.
- W1986592442 hasRelatedWork W1557945163 @default.
- W1986592442 hasRelatedWork W1978042415 @default.
- W1986592442 hasRelatedWork W1985218657 @default.
- W1986592442 hasRelatedWork W2017331178 @default.
- W1986592442 hasRelatedWork W2096753949 @default.
- W1986592442 hasRelatedWork W2963341196 @default.
- W1986592442 hasRelatedWork W2976797620 @default.
- W1986592442 hasRelatedWork W3086542228 @default.
- W1986592442 hasRelatedWork W3106133691 @default.
- W1986592442 hasRelatedWork W4249580765 @default.
- W1986592442 hasVolume "8" @default.
- W1986592442 isParatext "false" @default.
- W1986592442 isRetracted "false" @default.
- W1986592442 magId "1986592442" @default.
- W1986592442 workType "article" @default.