Matches in SemOpenAlex for { <https://semopenalex.org/work/W1986822011> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W1986822011 endingPage "789" @default.
- W1986822011 startingPage "781" @default.
- W1986822011 abstract "This study proposes a strategy to make a quantitative correlation between the NMR log-derived free fluid porosity and seismic attributes using multiple linear regression and artificial neural network. At first the well logs tied to seismic data by creating a synthetic seismogram at each well using the sonic and density logs. Then the post-stack seismic data will be inverted to acoustic impedance by applying the created synthetic seismograms. The higher resolution of well logs than seismic data problem is dissolved by three-dimensional modeling and averaging all of the seismic and logs data in each model cell. Then the cell’s properties are processed as inputs and outputs for all operations. Stepwise regression is used to select the best attributes predicting the free fluid porosity. The multiple linear regression equation and its correlation at each step are shown. Finally, an artificial neural network of multi-layer neural network type with back propagation of errors is used for the prediction, and the better method between these two methods was selected to apply it to the whole volume of study. The proposed methodology was applied to the South Pars Gas Field in the Persian Gulf Basin. The seismic attributes were extracted from three separated seismic parts. The petrophysical logs from four wells in these seismic cubes were used for generating and evaluating the reliability of the neural network." @default.
- W1986822011 created "2016-06-24" @default.
- W1986822011 creator A5019594757 @default.
- W1986822011 creator A5058384543 @default.
- W1986822011 creator A5077111332 @default.
- W1986822011 date "2015-03-06" @default.
- W1986822011 modified "2023-09-26" @default.
- W1986822011 title "NMR Log Prediction from Seismic Attributes: Using Multiple Linear Regression and Neural Network Methods" @default.
- W1986822011 cites W2021245834 @default.
- W1986822011 cites W2029108085 @default.
- W1986822011 cites W2038929774 @default.
- W1986822011 cites W4292199333 @default.
- W1986822011 doi "https://doi.org/10.1080/15567036.2011.592914" @default.
- W1986822011 hasPublicationYear "2015" @default.
- W1986822011 type Work @default.
- W1986822011 sameAs 1986822011 @default.
- W1986822011 citedByCount "1" @default.
- W1986822011 countsByYear W19868220112021 @default.
- W1986822011 crossrefType "journal-article" @default.
- W1986822011 hasAuthorship W1986822011A5019594757 @default.
- W1986822011 hasAuthorship W1986822011A5058384543 @default.
- W1986822011 hasAuthorship W1986822011A5077111332 @default.
- W1986822011 hasConcept C11413529 @default.
- W1986822011 hasConcept C119857082 @default.
- W1986822011 hasConcept C124101348 @default.
- W1986822011 hasConcept C127313418 @default.
- W1986822011 hasConcept C137219930 @default.
- W1986822011 hasConcept C153180895 @default.
- W1986822011 hasConcept C154945302 @default.
- W1986822011 hasConcept C159737794 @default.
- W1986822011 hasConcept C165205528 @default.
- W1986822011 hasConcept C169744125 @default.
- W1986822011 hasConcept C187320778 @default.
- W1986822011 hasConcept C2524010 @default.
- W1986822011 hasConcept C2781294565 @default.
- W1986822011 hasConcept C33923547 @default.
- W1986822011 hasConcept C35817400 @default.
- W1986822011 hasConcept C39267094 @default.
- W1986822011 hasConcept C41008148 @default.
- W1986822011 hasConcept C46293882 @default.
- W1986822011 hasConcept C48921125 @default.
- W1986822011 hasConcept C50644808 @default.
- W1986822011 hasConcept C64370902 @default.
- W1986822011 hasConcept C6648577 @default.
- W1986822011 hasConcept C8058405 @default.
- W1986822011 hasConceptScore W1986822011C11413529 @default.
- W1986822011 hasConceptScore W1986822011C119857082 @default.
- W1986822011 hasConceptScore W1986822011C124101348 @default.
- W1986822011 hasConceptScore W1986822011C127313418 @default.
- W1986822011 hasConceptScore W1986822011C137219930 @default.
- W1986822011 hasConceptScore W1986822011C153180895 @default.
- W1986822011 hasConceptScore W1986822011C154945302 @default.
- W1986822011 hasConceptScore W1986822011C159737794 @default.
- W1986822011 hasConceptScore W1986822011C165205528 @default.
- W1986822011 hasConceptScore W1986822011C169744125 @default.
- W1986822011 hasConceptScore W1986822011C187320778 @default.
- W1986822011 hasConceptScore W1986822011C2524010 @default.
- W1986822011 hasConceptScore W1986822011C2781294565 @default.
- W1986822011 hasConceptScore W1986822011C33923547 @default.
- W1986822011 hasConceptScore W1986822011C35817400 @default.
- W1986822011 hasConceptScore W1986822011C39267094 @default.
- W1986822011 hasConceptScore W1986822011C41008148 @default.
- W1986822011 hasConceptScore W1986822011C46293882 @default.
- W1986822011 hasConceptScore W1986822011C48921125 @default.
- W1986822011 hasConceptScore W1986822011C50644808 @default.
- W1986822011 hasConceptScore W1986822011C64370902 @default.
- W1986822011 hasConceptScore W1986822011C6648577 @default.
- W1986822011 hasConceptScore W1986822011C8058405 @default.
- W1986822011 hasIssue "7" @default.
- W1986822011 hasLocation W19868220111 @default.
- W1986822011 hasOpenAccess W1986822011 @default.
- W1986822011 hasPrimaryLocation W19868220111 @default.
- W1986822011 hasRelatedWork W1986822011 @default.
- W1986822011 hasRelatedWork W1999556772 @default.
- W1986822011 hasRelatedWork W2021186304 @default.
- W1986822011 hasRelatedWork W2032884563 @default.
- W1986822011 hasRelatedWork W2767755847 @default.
- W1986822011 hasRelatedWork W2973434401 @default.
- W1986822011 hasRelatedWork W3174403828 @default.
- W1986822011 hasRelatedWork W3215723174 @default.
- W1986822011 hasRelatedWork W4368282689 @default.
- W1986822011 hasRelatedWork W2182618911 @default.
- W1986822011 hasVolume "37" @default.
- W1986822011 isParatext "false" @default.
- W1986822011 isRetracted "false" @default.
- W1986822011 magId "1986822011" @default.
- W1986822011 workType "article" @default.