Matches in SemOpenAlex for { <https://semopenalex.org/work/W1986896960> ?p ?o ?g. }
Showing items 1 to 96 of
96
with 100 items per page.
- W1986896960 endingPage "1024" @default.
- W1986896960 startingPage "1014" @default.
- W1986896960 abstract "Ab initio calculations are reported of the rate of tautomerization by double-hydrogen transfer of porphine and three of its isotopomers. Both synchronous (one-step) and asynchronous (two-step) hydrogen tunneling mechanisms are considered. Geometries and force fields are calculated at the stationary points by means of a nonlocal density functional method that yields accurate equilibrium structures and vibrational spectra. Potential-energy surfaces are constructed in terms of all 73 in-plane normal-mode coordinates at the transition state, the mode with imaginary frequency being taken as the reaction coordinate. Hydrogen tunneling calculations are performed by means of a simplified instanton method that has proved reliable in calculations on smaller systems. The full multidimensional potential is used, and adiabatic separation of the normal modes from the reaction coordinate is avoided. The coordinates of the transverse modes are coupled linearly to the reaction coordinate and all modes are allowed to mix freely with each other along the reaction path. Direct evaluation of the instanton path is not necessary. To calculate the tunneling rate constant, it is sufficient to evaluate the one-dimensional instanton action along the reaction coordinate and to correct it for coupling with transverse vibrations. This makes the method computationally very efficient compared to other multidimensional approaches. For the synchronous mechanism, the calculations closely follow the previously established procedure, but for the asynchronous mechanism, generalization to an asymmetric barrier is required. This is achieved by dividing the normal-mode displacements that determine the couplings into symmetric and antisymmetric components which enhance and suppress the tunneling rate, respectively. The relative energies at the stationary points of the density-functional potential are calculated both by density functional theory (DFT) and by the Hartree–Fock method at the DFT geometry. The two methods yield results that are quite different. Comparison with a large set of experimental data comprising four isotopomers and a wide range of temperatures, indicates that neither method yields accurate energies but that some adjustment of the barrier height and the cis–trans energy difference is necessary to obtain satisfactory rate constants for the asynchronous mechanism. The other calculated parameters are used without adjustment. All parameters are combined to construct the potential required for the instanton calculations. A good fit to all available kinetic data is obtained, indicating that the method accounts accurately both for the isotope and the temperature dependence of the rate of tautomerization. It is shown that, in order to achieve this result, it is essential to include all linear couplings, since the balance between symmetric couplings, which enhance the tunneling rate, and antisymmetric couplings, which suppress it, varies between isotopomers. All dynamics calculations are performed with a newly developed code, which is designed to use the output of standard quantum-chemical codes and requires only minutes of CPU time on a standard workstation." @default.
- W1986896960 created "2016-06-24" @default.
- W1986896960 creator A5011252794 @default.
- W1986896960 creator A5027738820 @default.
- W1986896960 creator A5078131690 @default.
- W1986896960 creator A5088173965 @default.
- W1986896960 date "1998-07-15" @default.
- W1986896960 modified "2023-10-14" @default.
- W1986896960 title "Dynamics of tautomerism in porphine: An instanton approach" @default.
- W1986896960 cites W1967840644 @default.
- W1986896960 cites W1969778635 @default.
- W1986896960 cites W1974355666 @default.
- W1986896960 cites W1984675133 @default.
- W1986896960 cites W2001478569 @default.
- W1986896960 cites W2004511319 @default.
- W1986896960 cites W2004875064 @default.
- W1986896960 cites W2015178893 @default.
- W1986896960 cites W2021715136 @default.
- W1986896960 cites W2022518326 @default.
- W1986896960 cites W2026168627 @default.
- W1986896960 cites W2036618001 @default.
- W1986896960 cites W2043707669 @default.
- W1986896960 cites W2045656410 @default.
- W1986896960 cites W2061193993 @default.
- W1986896960 cites W2075878196 @default.
- W1986896960 cites W2077064557 @default.
- W1986896960 cites W2080103158 @default.
- W1986896960 cites W2086007312 @default.
- W1986896960 cites W2089170034 @default.
- W1986896960 cites W2091913494 @default.
- W1986896960 cites W2093498505 @default.
- W1986896960 cites W2093969133 @default.
- W1986896960 cites W2110830855 @default.
- W1986896960 cites W2144870776 @default.
- W1986896960 doi "https://doi.org/10.1063/1.476644" @default.
- W1986896960 hasPublicationYear "1998" @default.
- W1986896960 type Work @default.
- W1986896960 sameAs 1986896960 @default.
- W1986896960 citedByCount "59" @default.
- W1986896960 countsByYear W19868969602013 @default.
- W1986896960 countsByYear W19868969602015 @default.
- W1986896960 countsByYear W19868969602017 @default.
- W1986896960 countsByYear W19868969602018 @default.
- W1986896960 countsByYear W19868969602019 @default.
- W1986896960 countsByYear W19868969602020 @default.
- W1986896960 crossrefType "journal-article" @default.
- W1986896960 hasAuthorship W1986896960A5011252794 @default.
- W1986896960 hasAuthorship W1986896960A5027738820 @default.
- W1986896960 hasAuthorship W1986896960A5078131690 @default.
- W1986896960 hasAuthorship W1986896960A5088173965 @default.
- W1986896960 hasBestOaLocation W19868969601 @default.
- W1986896960 hasConcept C120398109 @default.
- W1986896960 hasConcept C121332964 @default.
- W1986896960 hasConcept C125198404 @default.
- W1986896960 hasConcept C147597530 @default.
- W1986896960 hasConcept C152401794 @default.
- W1986896960 hasConcept C163464917 @default.
- W1986896960 hasConcept C18553476 @default.
- W1986896960 hasConcept C185592680 @default.
- W1986896960 hasConcept C32909587 @default.
- W1986896960 hasConcept C37914503 @default.
- W1986896960 hasConcept C62520636 @default.
- W1986896960 hasConcept C84551667 @default.
- W1986896960 hasConceptScore W1986896960C120398109 @default.
- W1986896960 hasConceptScore W1986896960C121332964 @default.
- W1986896960 hasConceptScore W1986896960C125198404 @default.
- W1986896960 hasConceptScore W1986896960C147597530 @default.
- W1986896960 hasConceptScore W1986896960C152401794 @default.
- W1986896960 hasConceptScore W1986896960C163464917 @default.
- W1986896960 hasConceptScore W1986896960C18553476 @default.
- W1986896960 hasConceptScore W1986896960C185592680 @default.
- W1986896960 hasConceptScore W1986896960C32909587 @default.
- W1986896960 hasConceptScore W1986896960C37914503 @default.
- W1986896960 hasConceptScore W1986896960C62520636 @default.
- W1986896960 hasConceptScore W1986896960C84551667 @default.
- W1986896960 hasIssue "3" @default.
- W1986896960 hasLocation W19868969601 @default.
- W1986896960 hasOpenAccess W1986896960 @default.
- W1986896960 hasPrimaryLocation W19868969601 @default.
- W1986896960 hasRelatedWork W1777758032 @default.
- W1986896960 hasRelatedWork W1975443463 @default.
- W1986896960 hasRelatedWork W1986896960 @default.
- W1986896960 hasRelatedWork W2012241513 @default.
- W1986896960 hasRelatedWork W2038290469 @default.
- W1986896960 hasRelatedWork W2069619364 @default.
- W1986896960 hasRelatedWork W2084763406 @default.
- W1986896960 hasRelatedWork W2317245211 @default.
- W1986896960 hasRelatedWork W3087787224 @default.
- W1986896960 hasRelatedWork W3103581689 @default.
- W1986896960 hasVolume "109" @default.
- W1986896960 isParatext "false" @default.
- W1986896960 isRetracted "false" @default.
- W1986896960 magId "1986896960" @default.
- W1986896960 workType "article" @default.