Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987017523> ?p ?o ?g. }
- W1987017523 endingPage "194" @default.
- W1987017523 startingPage "184" @default.
- W1987017523 abstract "In this paper a face super-resolution method using two-dimensional canonical correlation analysis (2D CCA) is presented. A detail compensation step is followed to add high-frequency components to the reconstructed high-resolution face. Unlike most of the previous researches on face super-resolution algorithms that first transform the images into vectors, in our approach the relationship between the high-resolution and the low-resolution face image are maintained in their original 2D representation. In addition, rather than approximating the entire face, different parts of a face image are super-resolved separately to better preserve the local structure. The proposed method is compared with various state-of-the-art super-resolution algorithms using multiple evaluation criteria including face recognition performance. Results on publicly available datasets show that the proposed method super-resolves high quality face images which are very close to the ground-truth and performance gain is not dataset dependent. The method is very efficient in both the training and testing phases compared to the other approaches." @default.
- W1987017523 created "2016-06-24" @default.
- W1987017523 creator A5005639972 @default.
- W1987017523 creator A5071522801 @default.
- W1987017523 date "2014-10-01" @default.
- W1987017523 modified "2023-09-27" @default.
- W1987017523 title "Face image super-resolution using 2D CCA" @default.
- W1987017523 cites W1972002222 @default.
- W1987017523 cites W2006262236 @default.
- W1987017523 cites W2015497428 @default.
- W1987017523 cites W2017092385 @default.
- W1987017523 cites W2048024090 @default.
- W1987017523 cites W2067042811 @default.
- W1987017523 cites W2067625321 @default.
- W1987017523 cites W2081689238 @default.
- W1987017523 cites W2083095455 @default.
- W1987017523 cites W2083700614 @default.
- W1987017523 cites W2096027770 @default.
- W1987017523 cites W2096663965 @default.
- W1987017523 cites W2097039786 @default.
- W1987017523 cites W2099559703 @default.
- W1987017523 cites W2100235303 @default.
- W1987017523 cites W2100560442 @default.
- W1987017523 cites W2102544846 @default.
- W1987017523 cites W2103844245 @default.
- W1987017523 cites W2114380981 @default.
- W1987017523 cites W2117037963 @default.
- W1987017523 cites W2117553576 @default.
- W1987017523 cites W2133665775 @default.
- W1987017523 cites W2138714160 @default.
- W1987017523 cites W2141631520 @default.
- W1987017523 cites W2144468361 @default.
- W1987017523 cites W2146200771 @default.
- W1987017523 cites W2146640671 @default.
- W1987017523 cites W2149760002 @default.
- W1987017523 cites W2153288431 @default.
- W1987017523 cites W2156207079 @default.
- W1987017523 cites W2159200405 @default.
- W1987017523 cites W2159417278 @default.
- W1987017523 cites W2163303693 @default.
- W1987017523 cites W2163808566 @default.
- W1987017523 cites W2167349140 @default.
- W1987017523 cites W2168380057 @default.
- W1987017523 cites W2171107009 @default.
- W1987017523 cites W2547307783 @default.
- W1987017523 cites W4237723258 @default.
- W1987017523 doi "https://doi.org/10.1016/j.sigpro.2013.10.004" @default.
- W1987017523 hasPublicationYear "2014" @default.
- W1987017523 type Work @default.
- W1987017523 sameAs 1987017523 @default.
- W1987017523 citedByCount "61" @default.
- W1987017523 countsByYear W19870175232014 @default.
- W1987017523 countsByYear W19870175232015 @default.
- W1987017523 countsByYear W19870175232016 @default.
- W1987017523 countsByYear W19870175232017 @default.
- W1987017523 countsByYear W19870175232018 @default.
- W1987017523 countsByYear W19870175232019 @default.
- W1987017523 countsByYear W19870175232020 @default.
- W1987017523 countsByYear W19870175232021 @default.
- W1987017523 countsByYear W19870175232022 @default.
- W1987017523 countsByYear W19870175232023 @default.
- W1987017523 crossrefType "journal-article" @default.
- W1987017523 hasAuthorship W1987017523A5005639972 @default.
- W1987017523 hasAuthorship W1987017523A5071522801 @default.
- W1987017523 hasBestOaLocation W19870175232 @default.
- W1987017523 hasConcept C115961682 @default.
- W1987017523 hasConcept C138268822 @default.
- W1987017523 hasConcept C141239990 @default.
- W1987017523 hasConcept C144024400 @default.
- W1987017523 hasConcept C146849305 @default.
- W1987017523 hasConcept C153180895 @default.
- W1987017523 hasConcept C153874254 @default.
- W1987017523 hasConcept C154945302 @default.
- W1987017523 hasConcept C17744445 @default.
- W1987017523 hasConcept C199539241 @default.
- W1987017523 hasConcept C205372480 @default.
- W1987017523 hasConcept C2776359362 @default.
- W1987017523 hasConcept C2779304628 @default.
- W1987017523 hasConcept C31510193 @default.
- W1987017523 hasConcept C31972630 @default.
- W1987017523 hasConcept C36289849 @default.
- W1987017523 hasConcept C41008148 @default.
- W1987017523 hasConcept C94625758 @default.
- W1987017523 hasConceptScore W1987017523C115961682 @default.
- W1987017523 hasConceptScore W1987017523C138268822 @default.
- W1987017523 hasConceptScore W1987017523C141239990 @default.
- W1987017523 hasConceptScore W1987017523C144024400 @default.
- W1987017523 hasConceptScore W1987017523C146849305 @default.
- W1987017523 hasConceptScore W1987017523C153180895 @default.
- W1987017523 hasConceptScore W1987017523C153874254 @default.
- W1987017523 hasConceptScore W1987017523C154945302 @default.
- W1987017523 hasConceptScore W1987017523C17744445 @default.
- W1987017523 hasConceptScore W1987017523C199539241 @default.
- W1987017523 hasConceptScore W1987017523C205372480 @default.
- W1987017523 hasConceptScore W1987017523C2776359362 @default.
- W1987017523 hasConceptScore W1987017523C2779304628 @default.
- W1987017523 hasConceptScore W1987017523C31510193 @default.
- W1987017523 hasConceptScore W1987017523C31972630 @default.