Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987078617> ?p ?o ?g. }
- W1987078617 endingPage "124" @default.
- W1987078617 startingPage "111" @default.
- W1987078617 abstract "Rapid crystal growth can lead to disequilibrium uptake of growth-medium components whose diffusivities limit their dispersal near an advancing crystal interface. The recent documentation of an isotope mass effect on diffusion raises the possibility that even isotope ratios in crystals may be subject to this effect. Building upon existing 1-dimensional treatments, we describe a numerical modeling approach in which a spherical grain grows at the center of an infinite spherical medium of predetermined composition. Local equilibrium at the interface between the crystal and the growth medium is assumed, but the concentration of the species of interest in the growth medium is allowed to vary near the interface as a consequence of slow diffusion combined with rejection from (or incorporation within) the growing crystal. The disequilibrium uptake of elements and isotopes depends upon the ratio of crystal growth rate (R) to diffusivity in the growth medium (D). Conditions of fast mineral growth in a viscous magma—e.g., in lava lakes or small igneous bodies—result in accumulation of elements with K << 1 (or depletion of elements with K >> 1) near the growing mineral interface, forming a compositional boundary layer in the growth medium. In a static system, the magnitude of this compositional perturbation depends critically upon the diffusivity of the element or isotope of interest in the growth medium. If the system is dynamic—i.e., experiencing free or forced convection—then the vigor of convection also affects behavior. Significant fractionation of elements and isotopes is predicted to occur within the boundary layer during progressive crystal growth because diffusion rates of individual elements vary with size and charge and those of isotopes of the same element depend on their masses. Local equilibrium at the interface between the crystal and its growth medium means that a fast-growing crystal will record this fractionation in its resulting radial concentration profile. If the boundary-layer thickness, BL, is small (say, < 100 μm) and the equilibrium partition coefficient, K, is < 0.5, then a first-order estimate of the steady-state isotopic fractionation in a growing crystal is given byδ(‰)=1000⋅(1−DADB)⋅(R⋅BLDA)⋅(1−K), where DA and DB are the diffusivities of the faster and slower species in the growth medium and δ is the deviation from the equilibrium isotope ratio in parts per thousand. For isotopes of a single element, DA and DB will generally differ by < 1%, but plausible R/D ratios can nevertheless lead to deviations from equilibrium between the crystal and the growth medium of up to ~ 3‰. The model may bear on disequilibrium crystal-growth phenomena in a variety of geologic settings—including element- and isotopic profiles in crystals of both igneous and metamorphic rocks. It is suggested that compositional core to rim profile of a crystal may be a proxy for the near surface composition of the growth medium during crystal growth. Isotopic effects are discussed in detail because these have not been addressed previously; igneous systems are emphasized because higher crystal growth rates are more conducive to disequilibrium (including in the compositions of melt inclusions)." @default.
- W1987078617 created "2016-06-24" @default.
- W1987078617 creator A5026489964 @default.
- W1987078617 creator A5073438865 @default.
- W1987078617 date "2009-09-01" @default.
- W1987078617 modified "2023-10-11" @default.
- W1987078617 title "Non-equilibrium isotopic and elemental fractionation during diffusion-controlled crystal growth under static and dynamic conditions" @default.
- W1987078617 cites W162916080 @default.
- W1987078617 cites W1856019848 @default.
- W1987078617 cites W1963886661 @default.
- W1987078617 cites W1964706235 @default.
- W1987078617 cites W1965990098 @default.
- W1987078617 cites W1970046654 @default.
- W1987078617 cites W1973349322 @default.
- W1987078617 cites W1980720218 @default.
- W1987078617 cites W1984320389 @default.
- W1987078617 cites W1985159685 @default.
- W1987078617 cites W1985938344 @default.
- W1987078617 cites W1986969196 @default.
- W1987078617 cites W1991159537 @default.
- W1987078617 cites W1997065159 @default.
- W1987078617 cites W1997232138 @default.
- W1987078617 cites W2000506586 @default.
- W1987078617 cites W2004441878 @default.
- W1987078617 cites W2005739263 @default.
- W1987078617 cites W2006090166 @default.
- W1987078617 cites W2007389351 @default.
- W1987078617 cites W2007898146 @default.
- W1987078617 cites W2007935173 @default.
- W1987078617 cites W2009811409 @default.
- W1987078617 cites W2012877827 @default.
- W1987078617 cites W2017276220 @default.
- W1987078617 cites W2020364317 @default.
- W1987078617 cites W2022942376 @default.
- W1987078617 cites W2023916370 @default.
- W1987078617 cites W2026214812 @default.
- W1987078617 cites W2026337306 @default.
- W1987078617 cites W2033752503 @default.
- W1987078617 cites W2034601870 @default.
- W1987078617 cites W2039061568 @default.
- W1987078617 cites W2040026676 @default.
- W1987078617 cites W2046227584 @default.
- W1987078617 cites W2054496154 @default.
- W1987078617 cites W2055246759 @default.
- W1987078617 cites W2055384120 @default.
- W1987078617 cites W2055736194 @default.
- W1987078617 cites W2056974921 @default.
- W1987078617 cites W2057683220 @default.
- W1987078617 cites W2064047535 @default.
- W1987078617 cites W2065685952 @default.
- W1987078617 cites W2067014378 @default.
- W1987078617 cites W2072345902 @default.
- W1987078617 cites W2076036700 @default.
- W1987078617 cites W2076755830 @default.
- W1987078617 cites W2078439092 @default.
- W1987078617 cites W2093836373 @default.
- W1987078617 cites W2093865975 @default.
- W1987078617 cites W2104091804 @default.
- W1987078617 cites W2106079840 @default.
- W1987078617 cites W2107688672 @default.
- W1987078617 cites W2121841230 @default.
- W1987078617 cites W2123026017 @default.
- W1987078617 cites W2150359627 @default.
- W1987078617 cites W2152211135 @default.
- W1987078617 cites W2155773363 @default.
- W1987078617 cites W2158157333 @default.
- W1987078617 cites W2161484974 @default.
- W1987078617 cites W2162491678 @default.
- W1987078617 cites W2163847662 @default.
- W1987078617 cites W2304035493 @default.
- W1987078617 cites W2316671008 @default.
- W1987078617 cites W2385435147 @default.
- W1987078617 cites W2899759429 @default.
- W1987078617 doi "https://doi.org/10.1016/j.chemgeo.2008.10.036" @default.
- W1987078617 hasPublicationYear "2009" @default.
- W1987078617 type Work @default.
- W1987078617 sameAs 1987078617 @default.
- W1987078617 citedByCount "148" @default.
- W1987078617 countsByYear W19870786172012 @default.
- W1987078617 countsByYear W19870786172013 @default.
- W1987078617 countsByYear W19870786172014 @default.
- W1987078617 countsByYear W19870786172015 @default.
- W1987078617 countsByYear W19870786172016 @default.
- W1987078617 countsByYear W19870786172017 @default.
- W1987078617 countsByYear W19870786172018 @default.
- W1987078617 countsByYear W19870786172019 @default.
- W1987078617 countsByYear W19870786172020 @default.
- W1987078617 countsByYear W19870786172021 @default.
- W1987078617 countsByYear W19870786172022 @default.
- W1987078617 countsByYear W19870786172023 @default.
- W1987078617 crossrefType "journal-article" @default.
- W1987078617 hasAuthorship W1987078617A5026489964 @default.
- W1987078617 hasAuthorship W1987078617A5073438865 @default.
- W1987078617 hasConcept C121332964 @default.
- W1987078617 hasConcept C127313418 @default.
- W1987078617 hasConcept C151730666 @default.
- W1987078617 hasConcept C159467904 @default.
- W1987078617 hasConcept C178790620 @default.