Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987107070> ?p ?o ?g. }
- W1987107070 endingPage "2233" @default.
- W1987107070 startingPage "2223" @default.
- W1987107070 abstract "Transcranial magnetic resonance-guided focused ultrasound (TcMRgFUS) brain treatment systems compensate for skull-induced beam aberrations by adjusting the phase and amplitude of individual ultrasound transducer elements. These corrections are currently calculated based on a preacquired computed tomography (CT) scan of the patient's head. The purpose of the work presented here is to demonstrate the feasibility of using ultrashort echo-time magnetic resonance imaging (UTE MRI) instead of CT to calculate and apply aberration corrections on a clinical TcMRgFUS system.Phantom experiments were performed in three ex-vivo human skulls filled with tissue-mimicking hydrogel. Each skull phantom was imaged with both CT and UTE MRI. The MR images were then segmented into skull and not-skull pixels using a computationally efficient, threshold-based algorithm, and the resulting 3D binary skull map was converted into a series of 2D virtual CT images. Each skull was mounted in the head transducer of a clinical TcMRgFUS system (ExAblate Neuro, Insightec, Israel), and transcranial sonications were performed using a power setting of approximately 750 acoustic watts at several different target locations within the electronic steering range of the transducer. Each target location was sonicated three times: once using aberration corrections calculated from the actual CT scan, once using corrections calculated from the MRI-derived virtual CT scan, and once without applying any aberration correction. MR thermometry was performed in conjunction with each 10-s sonication, and the highest single-pixel temperature rise and surrounding-pixel mean were recorded for each sonication.The measured temperature rises were ∼ 45% larger for aberration-corrected sonications than for noncorrected sonications. This improvement was highly significant (p < 10(-4)). The difference between the single-pixel peak temperature rise and the surrounding-pixel mean, which reflects the sharpness of the thermal focus, was also significantly larger for aberration-corrected sonications. There was no significant difference between the sonication results achieved using CT-based and MR-based aberration correction.The authors have demonstrated that transcranial focal heating can be significantly improved in vitro by using UTE MRI to compute skull-induced ultrasound aberration corrections. Their results suggest that UTE MRI could be used instead of CT to implement such corrections on current 0.7 MHz clinical TcMRgFUS devices. The MR image acquisition and segmentation procedure demonstrated here would add less than 15 min to a clinical MRgFUS treatment session." @default.
- W1987107070 created "2016-06-24" @default.
- W1987107070 creator A5010807952 @default.
- W1987107070 creator A5017572322 @default.
- W1987107070 creator A5032666222 @default.
- W1987107070 creator A5072356464 @default.
- W1987107070 date "2015-05-01" @default.
- W1987107070 modified "2023-10-16" @default.
- W1987107070 title "Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: <i>In vitro</i> comparison on human calvaria" @default.
- W1987107070 cites W1496738072 @default.
- W1987107070 cites W1581380026 @default.
- W1987107070 cites W1603542412 @default.
- W1987107070 cites W1798045062 @default.
- W1987107070 cites W1979872711 @default.
- W1987107070 cites W1984473052 @default.
- W1987107070 cites W2003059727 @default.
- W1987107070 cites W2004721351 @default.
- W1987107070 cites W2005527079 @default.
- W1987107070 cites W2013031000 @default.
- W1987107070 cites W2022237839 @default.
- W1987107070 cites W2026298013 @default.
- W1987107070 cites W2029011692 @default.
- W1987107070 cites W2034167195 @default.
- W1987107070 cites W2035397698 @default.
- W1987107070 cites W2037839970 @default.
- W1987107070 cites W2063772545 @default.
- W1987107070 cites W2066398126 @default.
- W1987107070 cites W2067390494 @default.
- W1987107070 cites W2073956340 @default.
- W1987107070 cites W2077082767 @default.
- W1987107070 cites W2090230042 @default.
- W1987107070 cites W2093245095 @default.
- W1987107070 cites W2100495482 @default.
- W1987107070 cites W2115010194 @default.
- W1987107070 cites W2123757521 @default.
- W1987107070 cites W2142082007 @default.
- W1987107070 cites W2144352085 @default.
- W1987107070 cites W4229535724 @default.
- W1987107070 doi "https://doi.org/10.1118/1.4916656" @default.
- W1987107070 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25979016" @default.
- W1987107070 hasPublicationYear "2015" @default.
- W1987107070 type Work @default.
- W1987107070 sameAs 1987107070 @default.
- W1987107070 citedByCount "48" @default.
- W1987107070 countsByYear W19871070702015 @default.
- W1987107070 countsByYear W19871070702016 @default.
- W1987107070 countsByYear W19871070702017 @default.
- W1987107070 countsByYear W19871070702018 @default.
- W1987107070 countsByYear W19871070702019 @default.
- W1987107070 countsByYear W19871070702020 @default.
- W1987107070 countsByYear W19871070702021 @default.
- W1987107070 countsByYear W19871070702022 @default.
- W1987107070 countsByYear W19871070702023 @default.
- W1987107070 crossrefType "journal-article" @default.
- W1987107070 hasAuthorship W1987107070A5010807952 @default.
- W1987107070 hasAuthorship W1987107070A5017572322 @default.
- W1987107070 hasAuthorship W1987107070A5032666222 @default.
- W1987107070 hasAuthorship W1987107070A5072356464 @default.
- W1987107070 hasBestOaLocation W19871070701 @default.
- W1987107070 hasConcept C104293457 @default.
- W1987107070 hasConcept C105702510 @default.
- W1987107070 hasConcept C121332964 @default.
- W1987107070 hasConcept C126838900 @default.
- W1987107070 hasConcept C136229726 @default.
- W1987107070 hasConcept C143409427 @default.
- W1987107070 hasConcept C143753070 @default.
- W1987107070 hasConcept C163716698 @default.
- W1987107070 hasConcept C192562407 @default.
- W1987107070 hasConcept C24890656 @default.
- W1987107070 hasConcept C2779300802 @default.
- W1987107070 hasConcept C2989005 @default.
- W1987107070 hasConcept C56318395 @default.
- W1987107070 hasConcept C71924100 @default.
- W1987107070 hasConceptScore W1987107070C104293457 @default.
- W1987107070 hasConceptScore W1987107070C105702510 @default.
- W1987107070 hasConceptScore W1987107070C121332964 @default.
- W1987107070 hasConceptScore W1987107070C126838900 @default.
- W1987107070 hasConceptScore W1987107070C136229726 @default.
- W1987107070 hasConceptScore W1987107070C143409427 @default.
- W1987107070 hasConceptScore W1987107070C143753070 @default.
- W1987107070 hasConceptScore W1987107070C163716698 @default.
- W1987107070 hasConceptScore W1987107070C192562407 @default.
- W1987107070 hasConceptScore W1987107070C24890656 @default.
- W1987107070 hasConceptScore W1987107070C2779300802 @default.
- W1987107070 hasConceptScore W1987107070C2989005 @default.
- W1987107070 hasConceptScore W1987107070C56318395 @default.
- W1987107070 hasConceptScore W1987107070C71924100 @default.
- W1987107070 hasIssue "5" @default.
- W1987107070 hasLocation W19871070701 @default.
- W1987107070 hasLocation W19871070702 @default.
- W1987107070 hasOpenAccess W1987107070 @default.
- W1987107070 hasPrimaryLocation W19871070701 @default.
- W1987107070 hasRelatedWork W2049092462 @default.
- W1987107070 hasRelatedWork W2050011232 @default.
- W1987107070 hasRelatedWork W2152357631 @default.
- W1987107070 hasRelatedWork W2618675588 @default.
- W1987107070 hasRelatedWork W2765216294 @default.
- W1987107070 hasRelatedWork W2808733275 @default.