Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987167813> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W1987167813 abstract "Lately, bivariate zero-inflated (BZI) regression models have been used in many instances in the medical sciences to model excess zeros. Examples include the BZI Poisson (BZIP), BZI negative binomial (BZINB) models, etc. Such formulations vary in the basic modeling aspect and use the EM algorithm (Dempster, Laird and Rubin, 1977) for parameter estimation. A different modeling formulation in the Bayesian context is given by Dagne (2004). We extend the modeling to a more general setting for multivariate ZIP models for count data with excess zeros as proposed by Li, Lu, Park, Kim, Brinkley and Peterson (1999), focusing on a particular bivariate regression formulation. For the basic formulation in the case of bivariate data, we assume that Xi are (latent) independent Poisson random variables with parameters λ i, i = 0, 1, 2. A bi-variate count vector (Y1, Y2) response follows a mixture of four distributions; p0 stands for the mixing probability of a point mass distribution at (0, 0); p1, the mixing probability that Y2 = 0, while Y1 = X0 + X1; p2, the mixing probability that Y1 = 0 while Y2 = X0 + X2; and finally (1 - p0 - p1 - p2), the mixing probability that Yi = Xi + X0, i = 1, 2. The choice of the parameters {pi, λ i, i = 0, 1, 2} ensures that the marginal distributions of Yi are zero inflated Poisson (λ 0 + λ i). All the parameters thus introduced are allowed to depend on co-variates through canonical link generalized linear models (McCullagh and Nelder, 1989). This flexibility allows for a range of real-life applications, especially in the medical and biological fields, where the counts are bivariate in nature (with strong association between the processes) and where there are excess of zeros in one or both processes. Our contribution in this paper is to employ a fully Bayesian approach consolidating the work of Dagne (2004) and Li et al. (1999) generalizing the modeling and sampling-based methods described by Ghosh, Mukhopadhyay and Lu (2006) to estimate the parameters and obtain posterior credible intervals both in the case where co-variates are not available as well as in the case where they are. In this context, we provide explicit data augmentation techniques that lend themselves to easier implementation of the Gibbs sampler by giving rise to well-known and closed-form posterior distributions in the bivariate ZIP case. We then use simulations to explore the effectiveness of this estimation using the Bayesian BZIP procedure, comparing the performance to the Bayesian and classical ZIP approaches. Finally, we demonstrate the methodology based on bivariate plant count data with excess zeros that was collected on plots in the Phoenix metropolitan area and compare the results with independent ZIP regression models fitted to both processes." @default.
- W1987167813 created "2016-06-24" @default.
- W1987167813 creator A5007065402 @default.
- W1987167813 creator A5035121052 @default.
- W1987167813 date "2010-01-13" @default.
- W1987167813 modified "2023-09-28" @default.
- W1987167813 title "Bivariate Zero-Inflated Regression for Count Data: A Bayesian Approach with Application to Plant Counts" @default.
- W1987167813 cites W115512430 @default.
- W1987167813 cites W137653784 @default.
- W1987167813 cites W1494853941 @default.
- W1987167813 cites W1497309193 @default.
- W1987167813 cites W1528905581 @default.
- W1987167813 cites W1549853756 @default.
- W1987167813 cites W1582614941 @default.
- W1987167813 cites W1987061312 @default.
- W1987167813 cites W1988204486 @default.
- W1987167813 cites W2023206198 @default.
- W1987167813 cites W2045656233 @default.
- W1987167813 cites W2049914449 @default.
- W1987167813 cites W2081452991 @default.
- W1987167813 cites W2083875149 @default.
- W1987167813 cites W2115399956 @default.
- W1987167813 cites W2130416410 @default.
- W1987167813 cites W2148534890 @default.
- W1987167813 cites W3129711340 @default.
- W1987167813 doi "https://doi.org/10.2202/1557-4679.1229" @default.
- W1987167813 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21969981" @default.
- W1987167813 hasPublicationYear "2010" @default.
- W1987167813 type Work @default.
- W1987167813 sameAs 1987167813 @default.
- W1987167813 citedByCount "12" @default.
- W1987167813 countsByYear W19871678132015 @default.
- W1987167813 countsByYear W19871678132016 @default.
- W1987167813 countsByYear W19871678132017 @default.
- W1987167813 countsByYear W19871678132018 @default.
- W1987167813 countsByYear W19871678132019 @default.
- W1987167813 countsByYear W19871678132022 @default.
- W1987167813 crossrefType "journal-article" @default.
- W1987167813 hasAuthorship W1987167813A5007065402 @default.
- W1987167813 hasAuthorship W1987167813A5035121052 @default.
- W1987167813 hasBestOaLocation W19871678131 @default.
- W1987167813 hasConcept C100906024 @default.
- W1987167813 hasConcept C105795698 @default.
- W1987167813 hasConcept C107673813 @default.
- W1987167813 hasConcept C144024400 @default.
- W1987167813 hasConcept C149923435 @default.
- W1987167813 hasConcept C199335787 @default.
- W1987167813 hasConcept C28826006 @default.
- W1987167813 hasConcept C2908647359 @default.
- W1987167813 hasConcept C33643355 @default.
- W1987167813 hasConcept C33923547 @default.
- W1987167813 hasConcept C64341305 @default.
- W1987167813 hasConcept C73269764 @default.
- W1987167813 hasConcept C88721176 @default.
- W1987167813 hasConceptScore W1987167813C100906024 @default.
- W1987167813 hasConceptScore W1987167813C105795698 @default.
- W1987167813 hasConceptScore W1987167813C107673813 @default.
- W1987167813 hasConceptScore W1987167813C144024400 @default.
- W1987167813 hasConceptScore W1987167813C149923435 @default.
- W1987167813 hasConceptScore W1987167813C199335787 @default.
- W1987167813 hasConceptScore W1987167813C28826006 @default.
- W1987167813 hasConceptScore W1987167813C2908647359 @default.
- W1987167813 hasConceptScore W1987167813C33643355 @default.
- W1987167813 hasConceptScore W1987167813C33923547 @default.
- W1987167813 hasConceptScore W1987167813C64341305 @default.
- W1987167813 hasConceptScore W1987167813C73269764 @default.
- W1987167813 hasConceptScore W1987167813C88721176 @default.
- W1987167813 hasLocation W19871678131 @default.
- W1987167813 hasLocation W19871678132 @default.
- W1987167813 hasOpenAccess W1987167813 @default.
- W1987167813 hasPrimaryLocation W19871678131 @default.
- W1987167813 hasRelatedWork W1516604343 @default.
- W1987167813 hasRelatedWork W1533477581 @default.
- W1987167813 hasRelatedWork W1899926349 @default.
- W1987167813 hasRelatedWork W2117733230 @default.
- W1987167813 hasRelatedWork W2159796125 @default.
- W1987167813 hasRelatedWork W2189104843 @default.
- W1987167813 hasRelatedWork W2475003067 @default.
- W1987167813 hasRelatedWork W2954595562 @default.
- W1987167813 hasRelatedWork W3186588872 @default.
- W1987167813 hasRelatedWork W3210390693 @default.
- W1987167813 isParatext "false" @default.
- W1987167813 isRetracted "false" @default.
- W1987167813 magId "1987167813" @default.
- W1987167813 workType "article" @default.