Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987207923> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W1987207923 endingPage "467" @default.
- W1987207923 startingPage "455" @default.
- W1987207923 abstract "Abstract The title study is performed on the massively parallel processing (MPP) environment of Connection Machine (CM) computers using truss structural sizing design problems as example design problems. In this design optimization procedure, only the displacement solution is replaced by that based on neural net technology (under a given set of cross-sectional size parameters (e.g., areas) in the MPP finite element structural reanalysis). This structural reanalysis procedure, together with a vastly improved and parallelized version of the integral global optimization (IGO) stochastic algorithm, IIGO, forms the present MPP structural design methodology. In addition, a procedure to correct the final optimal design for constraint violation or too-conservatively satisfied constraint condition caused by inaccuracy of the NN (neural network) analysis model is also formulated. Evaluation of the numerical performance of the developed computational algorithm set, capability, and strategy is made, primarily on the Connection Machine CM-2 model computer by performing three neural-network-based truss structural reanalysis/minimum weight design problems." @default.
- W1987207923 created "2016-06-24" @default.
- W1987207923 creator A5039024439 @default.
- W1987207923 date "1994-08-01" @default.
- W1987207923 modified "2023-09-24" @default.
- W1987207923 title "Massively parallel structural design using stochastic optimization and mixed neuralnet/finite element analysis methods" @default.
- W1987207923 cites W2000174080 @default.
- W1987207923 cites W2040877819 @default.
- W1987207923 cites W2097860759 @default.
- W1987207923 cites W2318075075 @default.
- W1987207923 doi "https://doi.org/10.1016/0956-0521(94)90026-4" @default.
- W1987207923 hasPublicationYear "1994" @default.
- W1987207923 type Work @default.
- W1987207923 sameAs 1987207923 @default.
- W1987207923 citedByCount "14" @default.
- W1987207923 countsByYear W19872079232013 @default.
- W1987207923 countsByYear W19872079232020 @default.
- W1987207923 countsByYear W19872079232022 @default.
- W1987207923 crossrefType "journal-article" @default.
- W1987207923 hasAuthorship W1987207923A5039024439 @default.
- W1987207923 hasConcept C127413603 @default.
- W1987207923 hasConcept C135628077 @default.
- W1987207923 hasConcept C173608175 @default.
- W1987207923 hasConcept C190475519 @default.
- W1987207923 hasConcept C41008148 @default.
- W1987207923 hasConcept C459310 @default.
- W1987207923 hasConcept C66938386 @default.
- W1987207923 hasConceptScore W1987207923C127413603 @default.
- W1987207923 hasConceptScore W1987207923C135628077 @default.
- W1987207923 hasConceptScore W1987207923C173608175 @default.
- W1987207923 hasConceptScore W1987207923C190475519 @default.
- W1987207923 hasConceptScore W1987207923C41008148 @default.
- W1987207923 hasConceptScore W1987207923C459310 @default.
- W1987207923 hasConceptScore W1987207923C66938386 @default.
- W1987207923 hasIssue "4-6" @default.
- W1987207923 hasLocation W19872079231 @default.
- W1987207923 hasOpenAccess W1987207923 @default.
- W1987207923 hasPrimaryLocation W19872079231 @default.
- W1987207923 hasRelatedWork W119040397 @default.
- W1987207923 hasRelatedWork W148823471 @default.
- W1987207923 hasRelatedWork W1542309263 @default.
- W1987207923 hasRelatedWork W1572543472 @default.
- W1987207923 hasRelatedWork W188389651 @default.
- W1987207923 hasRelatedWork W1968046689 @default.
- W1987207923 hasRelatedWork W2024804689 @default.
- W1987207923 hasRelatedWork W2072182049 @default.
- W1987207923 hasRelatedWork W2334801618 @default.
- W1987207923 hasRelatedWork W2622518229 @default.
- W1987207923 hasVolume "5" @default.
- W1987207923 isParatext "false" @default.
- W1987207923 isRetracted "false" @default.
- W1987207923 magId "1987207923" @default.
- W1987207923 workType "article" @default.