Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987209969> ?p ?o ?g. }
- W1987209969 endingPage "220" @default.
- W1987209969 startingPage "193" @default.
- W1987209969 abstract "We examine the film blowing process (FBP), which is widely used for manufacturing biaxially stretched films of polymeric materials. The viscoelastic property of the material is taken into account by employing the Upper Convected Maxwell, the Oldroyd-B or the Phan-Thien and Tanner constitutive model. In contrast to all previous theoretical works, which followed the now classical method developed by Pearson and Petrie [J.R.A. Pearson, C.J.S. Petrie, The flow of a tubular film. Part 1. Formal mathematical representation, J. Fluid Mech. 40 (1) (1970) 1–19; J.R.A. Pearson, C.J.S. Petrie, The flow of a tubular film. Part 2. Interpretation of the model and discussion of solutions, J. Fluid Mech. 42 (3) (1970) 609–625], we analyze the process by starting with the general three-dimensional mass and momentum balances and by formally and systematically applying the thin-film approximation. This procedure results in two-dimensional dynamic balances in both the axial and azimuthal directions. Although these balances are highly non-linear and more complicated than the original momentum balance, they are reduced by one spatial dimension and, more importantly, they are more general than the classical ones, whereas they are developed in a rigorous and straightforward manner. When we assume axial symmetry and steady state, we recover the earlier model equations. However, this new methodology allows us to examine not only axisymmetric, but also non-axisymmetric disturbances to this base flow and to retain the time derivatives in all the governing equations. This procedure is an extension of our earlier one used to study transient annular extrusion [K. Housiadas, J. Tsamopoulos, Unsteady flow of an axisymmetric annular film under gravity, Phys. Fluids 10 (10) (1998) 2500–2516; K. Housiadas, J. Tsamopoulos, Unsteady extrusion of a viscoelastic annular film: I. General model and its numerical solution, J. Non-Newton. Fluid Mech. 88 (3) (2000) 229–259], which also involved the thin-film approximation and three moving interfaces, but under the assumption of axial symmetry. Viscous, elastic, inertial, gravitational and capillary forces are included in our model. The base state is computed using finite differences to simultaneously predict bubble shape, film thickness, velocity, pressure and polymer extra-stress profiles. Subsequently, its linear stability is examined to two- and three-dimensional disturbances by solving the full eigenvalue problem to determine the stability regions of the process. It is shown that under typical operating conditions the bubble becomes unstable first to non-axisymmetric disturbances, although two-dimensional instability is also predicted by our model, in agreement with recent experiments." @default.
- W1987209969 created "2016-06-24" @default.
- W1987209969 creator A5043316376 @default.
- W1987209969 creator A5067526505 @default.
- W1987209969 creator A5078689494 @default.
- W1987209969 date "2007-02-01" @default.
- W1987209969 modified "2023-10-12" @default.
- W1987209969 title "Two- and three-dimensional instabilities in the film blowing process" @default.
- W1987209969 cites W109271441 @default.
- W1987209969 cites W1967151101 @default.
- W1987209969 cites W1967903848 @default.
- W1987209969 cites W1969227497 @default.
- W1987209969 cites W1974448944 @default.
- W1987209969 cites W1976010616 @default.
- W1987209969 cites W1988879109 @default.
- W1987209969 cites W2007832768 @default.
- W1987209969 cites W2008322056 @default.
- W1987209969 cites W2014674338 @default.
- W1987209969 cites W2020414426 @default.
- W1987209969 cites W2023625017 @default.
- W1987209969 cites W2023963341 @default.
- W1987209969 cites W2024701245 @default.
- W1987209969 cites W2026757793 @default.
- W1987209969 cites W2033072408 @default.
- W1987209969 cites W2033886982 @default.
- W1987209969 cites W2040158530 @default.
- W1987209969 cites W2061807711 @default.
- W1987209969 cites W2062415364 @default.
- W1987209969 cites W2072057803 @default.
- W1987209969 cites W2076012510 @default.
- W1987209969 cites W2102251783 @default.
- W1987209969 cites W2111419153 @default.
- W1987209969 cites W2130967867 @default.
- W1987209969 cites W2133943192 @default.
- W1987209969 cites W2145403304 @default.
- W1987209969 cites W2153761481 @default.
- W1987209969 cites W2155560259 @default.
- W1987209969 doi "https://doi.org/10.1016/j.jnnfm.2006.09.006" @default.
- W1987209969 hasPublicationYear "2007" @default.
- W1987209969 type Work @default.
- W1987209969 sameAs 1987209969 @default.
- W1987209969 citedByCount "10" @default.
- W1987209969 countsByYear W19872099692012 @default.
- W1987209969 countsByYear W19872099692019 @default.
- W1987209969 countsByYear W19872099692020 @default.
- W1987209969 crossrefType "journal-article" @default.
- W1987209969 hasAuthorship W1987209969A5043316376 @default.
- W1987209969 hasAuthorship W1987209969A5067526505 @default.
- W1987209969 hasAuthorship W1987209969A5078689494 @default.
- W1987209969 hasConcept C10138342 @default.
- W1987209969 hasConcept C121332964 @default.
- W1987209969 hasConcept C121864883 @default.
- W1987209969 hasConcept C134306372 @default.
- W1987209969 hasConcept C135628077 @default.
- W1987209969 hasConcept C162324750 @default.
- W1987209969 hasConcept C17744445 @default.
- W1987209969 hasConcept C186541917 @default.
- W1987209969 hasConcept C199343813 @default.
- W1987209969 hasConcept C199360897 @default.
- W1987209969 hasConcept C199539241 @default.
- W1987209969 hasConcept C202444582 @default.
- W1987209969 hasConcept C202973686 @default.
- W1987209969 hasConcept C2524010 @default.
- W1987209969 hasConcept C2776359362 @default.
- W1987209969 hasConcept C2777686260 @default.
- W1987209969 hasConcept C2778029271 @default.
- W1987209969 hasConcept C2779886137 @default.
- W1987209969 hasConcept C33026886 @default.
- W1987209969 hasConcept C33676613 @default.
- W1987209969 hasConcept C33923547 @default.
- W1987209969 hasConcept C38349280 @default.
- W1987209969 hasConcept C41008148 @default.
- W1987209969 hasConcept C527412718 @default.
- W1987209969 hasConcept C57879066 @default.
- W1987209969 hasConcept C60718061 @default.
- W1987209969 hasConcept C71924100 @default.
- W1987209969 hasConcept C74650414 @default.
- W1987209969 hasConcept C94625758 @default.
- W1987209969 hasConcept C97355855 @default.
- W1987209969 hasConceptScore W1987209969C10138342 @default.
- W1987209969 hasConceptScore W1987209969C121332964 @default.
- W1987209969 hasConceptScore W1987209969C121864883 @default.
- W1987209969 hasConceptScore W1987209969C134306372 @default.
- W1987209969 hasConceptScore W1987209969C135628077 @default.
- W1987209969 hasConceptScore W1987209969C162324750 @default.
- W1987209969 hasConceptScore W1987209969C17744445 @default.
- W1987209969 hasConceptScore W1987209969C186541917 @default.
- W1987209969 hasConceptScore W1987209969C199343813 @default.
- W1987209969 hasConceptScore W1987209969C199360897 @default.
- W1987209969 hasConceptScore W1987209969C199539241 @default.
- W1987209969 hasConceptScore W1987209969C202444582 @default.
- W1987209969 hasConceptScore W1987209969C202973686 @default.
- W1987209969 hasConceptScore W1987209969C2524010 @default.
- W1987209969 hasConceptScore W1987209969C2776359362 @default.
- W1987209969 hasConceptScore W1987209969C2777686260 @default.
- W1987209969 hasConceptScore W1987209969C2778029271 @default.
- W1987209969 hasConceptScore W1987209969C2779886137 @default.
- W1987209969 hasConceptScore W1987209969C33026886 @default.