Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987226891> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W1987226891 abstract "The Concept of classification and learning will suit well to medical applications, especially those that need complex diagnostic measurements. Therefore classification technique can be used for cancer disease prediction. This approach is very much interesting as it is part of a growing demand towards predictive diagnosis. From the available studies it is evident that classification and learning methods can be used effectively to improve the accuracy of predicting a disease and its recurrence. In the present work classification techniques namely Support Vector Machine [SVM] and Random Forest [RF] are used to learn, classify and compare cancer disease data with varying kernels and kernel parameters. Results with Support Vector Machines and Random Forest are compared for different data sets. The results with different kernels are tuned with proper parameters selection. Results are analyzed with confusion matrix." @default.
- W1987226891 created "2016-06-24" @default.
- W1987226891 creator A5009118198 @default.
- W1987226891 creator A5049321641 @default.
- W1987226891 creator A5064673249 @default.
- W1987226891 creator A5065448458 @default.
- W1987226891 date "2012-07-01" @default.
- W1987226891 modified "2023-09-24" @default.
- W1987226891 title "Cancer disease prediction with support vector machine and random forest classification techniques" @default.
- W1987226891 cites W1930624869 @default.
- W1987226891 cites W1945694619 @default.
- W1987226891 cites W1970404982 @default.
- W1987226891 cites W1996826971 @default.
- W1987226891 cites W2047090776 @default.
- W1987226891 cites W2087347434 @default.
- W1987226891 cites W2118286367 @default.
- W1987226891 cites W2118585731 @default.
- W1987226891 cites W2119821739 @default.
- W1987226891 cites W2128718068 @default.
- W1987226891 cites W2142334564 @default.
- W1987226891 cites W2153635508 @default.
- W1987226891 cites W2156909104 @default.
- W1987226891 cites W2160072419 @default.
- W1987226891 cites W2911964244 @default.
- W1987226891 cites W91932901 @default.
- W1987226891 doi "https://doi.org/10.1109/cyberneticscom.2012.6381608" @default.
- W1987226891 hasPublicationYear "2012" @default.
- W1987226891 type Work @default.
- W1987226891 sameAs 1987226891 @default.
- W1987226891 citedByCount "5" @default.
- W1987226891 countsByYear W19872268912014 @default.
- W1987226891 countsByYear W19872268912015 @default.
- W1987226891 countsByYear W19872268912016 @default.
- W1987226891 countsByYear W19872268912017 @default.
- W1987226891 countsByYear W19872268912021 @default.
- W1987226891 crossrefType "proceedings-article" @default.
- W1987226891 hasAuthorship W1987226891A5009118198 @default.
- W1987226891 hasAuthorship W1987226891A5049321641 @default.
- W1987226891 hasAuthorship W1987226891A5064673249 @default.
- W1987226891 hasAuthorship W1987226891A5065448458 @default.
- W1987226891 hasBestOaLocation W19872268912 @default.
- W1987226891 hasConcept C110083411 @default.
- W1987226891 hasConcept C114614502 @default.
- W1987226891 hasConcept C119857082 @default.
- W1987226891 hasConcept C12267149 @default.
- W1987226891 hasConcept C124101348 @default.
- W1987226891 hasConcept C125168437 @default.
- W1987226891 hasConcept C138602881 @default.
- W1987226891 hasConcept C14948415 @default.
- W1987226891 hasConcept C153180895 @default.
- W1987226891 hasConcept C154945302 @default.
- W1987226891 hasConcept C169258074 @default.
- W1987226891 hasConcept C33923547 @default.
- W1987226891 hasConcept C41008148 @default.
- W1987226891 hasConcept C74193536 @default.
- W1987226891 hasConcept C81917197 @default.
- W1987226891 hasConceptScore W1987226891C110083411 @default.
- W1987226891 hasConceptScore W1987226891C114614502 @default.
- W1987226891 hasConceptScore W1987226891C119857082 @default.
- W1987226891 hasConceptScore W1987226891C12267149 @default.
- W1987226891 hasConceptScore W1987226891C124101348 @default.
- W1987226891 hasConceptScore W1987226891C125168437 @default.
- W1987226891 hasConceptScore W1987226891C138602881 @default.
- W1987226891 hasConceptScore W1987226891C14948415 @default.
- W1987226891 hasConceptScore W1987226891C153180895 @default.
- W1987226891 hasConceptScore W1987226891C154945302 @default.
- W1987226891 hasConceptScore W1987226891C169258074 @default.
- W1987226891 hasConceptScore W1987226891C33923547 @default.
- W1987226891 hasConceptScore W1987226891C41008148 @default.
- W1987226891 hasConceptScore W1987226891C74193536 @default.
- W1987226891 hasConceptScore W1987226891C81917197 @default.
- W1987226891 hasLocation W19872268911 @default.
- W1987226891 hasLocation W19872268912 @default.
- W1987226891 hasOpenAccess W1987226891 @default.
- W1987226891 hasPrimaryLocation W19872268911 @default.
- W1987226891 hasRelatedWork W1496131365 @default.
- W1987226891 hasRelatedWork W1567649426 @default.
- W1987226891 hasRelatedWork W1838515187 @default.
- W1987226891 hasRelatedWork W1977267907 @default.
- W1987226891 hasRelatedWork W2086200957 @default.
- W1987226891 hasRelatedWork W2095496323 @default.
- W1987226891 hasRelatedWork W2096059361 @default.
- W1987226891 hasRelatedWork W2103268999 @default.
- W1987226891 hasRelatedWork W2104733108 @default.
- W1987226891 hasRelatedWork W2141513335 @default.
- W1987226891 hasRelatedWork W2142830052 @default.
- W1987226891 hasRelatedWork W2150625326 @default.
- W1987226891 hasRelatedWork W2153349472 @default.
- W1987226891 hasRelatedWork W2158605461 @default.
- W1987226891 hasRelatedWork W2168404696 @default.
- W1987226891 hasRelatedWork W2352397209 @default.
- W1987226891 hasRelatedWork W2356478727 @default.
- W1987226891 hasRelatedWork W2526660404 @default.
- W1987226891 hasRelatedWork W2535392091 @default.
- W1987226891 hasRelatedWork W2779474474 @default.
- W1987226891 isParatext "false" @default.
- W1987226891 isRetracted "false" @default.
- W1987226891 magId "1987226891" @default.
- W1987226891 workType "article" @default.