Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987264857> ?p ?o ?g. }
- W1987264857 endingPage "772" @default.
- W1987264857 startingPage "765" @default.
- W1987264857 abstract "Backgrounds & Aims Saturated free fatty acids induce hepatocyte lipoapoptosis, a key pathologic feature of non-alcoholic steatohepatitis. The saturated free fatty acid palmitate induces hepatocyte lipoapoptosis via an endoplasmic reticulum stress pathway resulting in c-Jun-N-terminal (JNK) activation. Glycogen synthase kinase (GSK)-3 is a serine/threonine kinase which may also promote JNK activation. Thus, our aim was to determine if GSK-3 inhibition suppresses palmitate induced JNK activation and lipoapoptosis. Methods For these studies, we employed mouse primary hepatocytes, Huh-7 and Hep3B cell lines. Results Palmitate-induced GSK-3 activation was identified by phosphorylation of its substrate glycogen synthase. GSK-3 pharmacologic inhibition, by GSK-3 inhibitor IX and enzastaurin, significantly reduced PA-mediated lipoapoptosis. More importantly, Huh-7 cells, in which either GSK-3α or GSK-3β isoforms were stably and selectively knocked down by shRNA, displayed resistance to palmitate-induced cytotoxicity. GSK-3 pharmacological inhibitors and shRNA-targeted knockdown of GSK-3α or GSK-3β also suppressed JNK activation by palmitate. JNK activation, in part, promotes lipoapotosis by inducing expression of the pro-apoptotic effector p53-upregulated modulator of apoptosis (PUMA). Consistent with this concept, GSK-3 pharmacologic inhibition also reduced PUMA cellular protein levels during exposure to palmitate. On the other hand, the GSK-3 inhibitors did not prevent PA induction of ER stress. Conclusions Our results suggest that GSK-3 activation promotes a JNK-dependent cytotoxic signaling cascade culminating in lipoapoptosis. Saturated free fatty acids induce hepatocyte lipoapoptosis, a key pathologic feature of non-alcoholic steatohepatitis. The saturated free fatty acid palmitate induces hepatocyte lipoapoptosis via an endoplasmic reticulum stress pathway resulting in c-Jun-N-terminal (JNK) activation. Glycogen synthase kinase (GSK)-3 is a serine/threonine kinase which may also promote JNK activation. Thus, our aim was to determine if GSK-3 inhibition suppresses palmitate induced JNK activation and lipoapoptosis. For these studies, we employed mouse primary hepatocytes, Huh-7 and Hep3B cell lines. Palmitate-induced GSK-3 activation was identified by phosphorylation of its substrate glycogen synthase. GSK-3 pharmacologic inhibition, by GSK-3 inhibitor IX and enzastaurin, significantly reduced PA-mediated lipoapoptosis. More importantly, Huh-7 cells, in which either GSK-3α or GSK-3β isoforms were stably and selectively knocked down by shRNA, displayed resistance to palmitate-induced cytotoxicity. GSK-3 pharmacological inhibitors and shRNA-targeted knockdown of GSK-3α or GSK-3β also suppressed JNK activation by palmitate. JNK activation, in part, promotes lipoapotosis by inducing expression of the pro-apoptotic effector p53-upregulated modulator of apoptosis (PUMA). Consistent with this concept, GSK-3 pharmacologic inhibition also reduced PUMA cellular protein levels during exposure to palmitate. On the other hand, the GSK-3 inhibitors did not prevent PA induction of ER stress. Our results suggest that GSK-3 activation promotes a JNK-dependent cytotoxic signaling cascade culminating in lipoapoptosis." @default.
- W1987264857 created "2016-06-24" @default.
- W1987264857 creator A5004470985 @default.
- W1987264857 creator A5023446129 @default.
- W1987264857 creator A5038627604 @default.
- W1987264857 creator A5061507227 @default.
- W1987264857 creator A5066905899 @default.
- W1987264857 creator A5080426319 @default.
- W1987264857 creator A5081293248 @default.
- W1987264857 creator A5084988782 @default.
- W1987264857 date "2011-04-01" @default.
- W1987264857 modified "2023-10-16" @default.
- W1987264857 title "Glycogen synthase kinase-3 (GSK-3) inhibition attenuates hepatocyte lipoapoptosis" @default.
- W1987264857 cites W1627591531 @default.
- W1987264857 cites W1968940692 @default.
- W1987264857 cites W1973675690 @default.
- W1987264857 cites W1975610756 @default.
- W1987264857 cites W1983435458 @default.
- W1987264857 cites W1997317586 @default.
- W1987264857 cites W2001837599 @default.
- W1987264857 cites W2002419608 @default.
- W1987264857 cites W2012868552 @default.
- W1987264857 cites W2027889152 @default.
- W1987264857 cites W2032049833 @default.
- W1987264857 cites W2033767254 @default.
- W1987264857 cites W2034188379 @default.
- W1987264857 cites W2034545642 @default.
- W1987264857 cites W2034595626 @default.
- W1987264857 cites W2040093546 @default.
- W1987264857 cites W2049399201 @default.
- W1987264857 cites W2054427773 @default.
- W1987264857 cites W2056148985 @default.
- W1987264857 cites W2059323997 @default.
- W1987264857 cites W2060847352 @default.
- W1987264857 cites W2062918974 @default.
- W1987264857 cites W2063953032 @default.
- W1987264857 cites W2083308747 @default.
- W1987264857 cites W2089426706 @default.
- W1987264857 cites W2089671344 @default.
- W1987264857 cites W2090745313 @default.
- W1987264857 cites W2092328207 @default.
- W1987264857 cites W2094151026 @default.
- W1987264857 cites W2096186886 @default.
- W1987264857 cites W2098555833 @default.
- W1987264857 cites W2103156933 @default.
- W1987264857 cites W2112156213 @default.
- W1987264857 cites W2113649834 @default.
- W1987264857 cites W2118338384 @default.
- W1987264857 cites W2118392131 @default.
- W1987264857 cites W2119336730 @default.
- W1987264857 cites W2119337139 @default.
- W1987264857 cites W2124403224 @default.
- W1987264857 cites W2128057304 @default.
- W1987264857 cites W2129125398 @default.
- W1987264857 cites W2152876030 @default.
- W1987264857 cites W2159036864 @default.
- W1987264857 cites W2161615702 @default.
- W1987264857 cites W2162051951 @default.
- W1987264857 cites W2166284858 @default.
- W1987264857 cites W2168413006 @default.
- W1987264857 cites W4250374989 @default.
- W1987264857 doi "https://doi.org/10.1016/j.jhep.2010.09.039" @default.
- W1987264857 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3060963" @default.
- W1987264857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21147505" @default.
- W1987264857 hasPublicationYear "2011" @default.
- W1987264857 type Work @default.
- W1987264857 sameAs 1987264857 @default.
- W1987264857 citedByCount "73" @default.
- W1987264857 countsByYear W19872648572012 @default.
- W1987264857 countsByYear W19872648572013 @default.
- W1987264857 countsByYear W19872648572014 @default.
- W1987264857 countsByYear W19872648572015 @default.
- W1987264857 countsByYear W19872648572016 @default.
- W1987264857 countsByYear W19872648572017 @default.
- W1987264857 countsByYear W19872648572018 @default.
- W1987264857 countsByYear W19872648572019 @default.
- W1987264857 countsByYear W19872648572020 @default.
- W1987264857 countsByYear W19872648572021 @default.
- W1987264857 countsByYear W19872648572022 @default.
- W1987264857 countsByYear W19872648572023 @default.
- W1987264857 crossrefType "journal-article" @default.
- W1987264857 hasAuthorship W1987264857A5004470985 @default.
- W1987264857 hasAuthorship W1987264857A5023446129 @default.
- W1987264857 hasAuthorship W1987264857A5038627604 @default.
- W1987264857 hasAuthorship W1987264857A5061507227 @default.
- W1987264857 hasAuthorship W1987264857A5066905899 @default.
- W1987264857 hasAuthorship W1987264857A5080426319 @default.
- W1987264857 hasAuthorship W1987264857A5081293248 @default.
- W1987264857 hasAuthorship W1987264857A5084988782 @default.
- W1987264857 hasBestOaLocation W19872648572 @default.
- W1987264857 hasConcept C104629339 @default.
- W1987264857 hasConcept C11960822 @default.
- W1987264857 hasConcept C126322002 @default.
- W1987264857 hasConcept C173396325 @default.
- W1987264857 hasConcept C182996813 @default.
- W1987264857 hasConcept C184235292 @default.
- W1987264857 hasConcept C185592680 @default.
- W1987264857 hasConcept C190232843 @default.