Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987297716> ?p ?o ?g. }
- W1987297716 endingPage "70" @default.
- W1987297716 startingPage "55" @default.
- W1987297716 abstract "As regional and global scales become more important to ecologists, methods must be developed for the application of existing fine-scale knowledge to predict coarser-scale ecosystem properties. This generally involves some form of model in which fine-scale components are aggregated. This aggregation is necessary to avoid the cumulative error associated with the estimation of a large number of parameters. However, aggregation can itself produce errors that arise because of the variation among the aggregated components. The statistical expectation operator can be used as a rigorous method for translating fine-scale relationships to coarser scales without aggregation errors. Unfortunately this method is too cumbersome to be applied in most cases, and alternative methods must be used. These alternative methods are typically partial corrections for the variation in only a few of the fine-scale attributes. Therefore, for these methods to be effective, the attributes that are the most severe sources of error must be identified a priori. We present a procedure for making these identifications based on a Monte Carlo sampling of the fine-scale attributes. We then present four methods of translating fine-scale knowledge so it can be applied at coarser scales: (1) partial transformations using the expectation operator, (2) moment expansions, (3) partitioning, and (4) calibration. These methods should make it possible to apply the vast store of fine-scale ecological knowledge to model coarser-scale attributes of ecosystems." @default.
- W1987297716 created "2016-06-24" @default.
- W1987297716 creator A5016563954 @default.
- W1987297716 creator A5042586242 @default.
- W1987297716 creator A5046186509 @default.
- W1987297716 creator A5051798727 @default.
- W1987297716 creator A5066940650 @default.
- W1987297716 creator A5081210385 @default.
- W1987297716 date "1992-02-01" @default.
- W1987297716 modified "2023-10-06" @default.
- W1987297716 title "Aggregating Fine-Scale Ecological Knowledge to Model Coarser-Scale Attributes of Ecosystems" @default.
- W1987297716 cites W1506069954 @default.
- W1987297716 cites W1590243370 @default.
- W1987297716 cites W1966720119 @default.
- W1987297716 cites W1971509094 @default.
- W1987297716 cites W1978794524 @default.
- W1987297716 cites W1978988138 @default.
- W1987297716 cites W1988413436 @default.
- W1987297716 cites W1996452952 @default.
- W1987297716 cites W1997671494 @default.
- W1987297716 cites W1998013690 @default.
- W1987297716 cites W2005365919 @default.
- W1987297716 cites W200858817 @default.
- W1987297716 cites W2009739358 @default.
- W1987297716 cites W2014467368 @default.
- W1987297716 cites W2034562813 @default.
- W1987297716 cites W2037825302 @default.
- W1987297716 cites W2060362624 @default.
- W1987297716 cites W2065928078 @default.
- W1987297716 cites W2068591364 @default.
- W1987297716 cites W2069631430 @default.
- W1987297716 cites W2071845379 @default.
- W1987297716 cites W2081198809 @default.
- W1987297716 cites W2083653776 @default.
- W1987297716 cites W2086165162 @default.
- W1987297716 cites W2094657874 @default.
- W1987297716 cites W2276056289 @default.
- W1987297716 cites W2313953460 @default.
- W1987297716 cites W2324913510 @default.
- W1987297716 cites W2331160901 @default.
- W1987297716 cites W2518972731 @default.
- W1987297716 cites W2796837256 @default.
- W1987297716 cites W2798643531 @default.
- W1987297716 cites W294351346 @default.
- W1987297716 cites W3004157836 @default.
- W1987297716 cites W3200839372 @default.
- W1987297716 cites W564267260 @default.
- W1987297716 cites W2114001875 @default.
- W1987297716 doi "https://doi.org/10.2307/1941889" @default.
- W1987297716 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27759192" @default.
- W1987297716 hasPublicationYear "1992" @default.
- W1987297716 type Work @default.
- W1987297716 sameAs 1987297716 @default.
- W1987297716 citedByCount "399" @default.
- W1987297716 countsByYear W19872977162012 @default.
- W1987297716 countsByYear W19872977162013 @default.
- W1987297716 countsByYear W19872977162014 @default.
- W1987297716 countsByYear W19872977162015 @default.
- W1987297716 countsByYear W19872977162016 @default.
- W1987297716 countsByYear W19872977162017 @default.
- W1987297716 countsByYear W19872977162018 @default.
- W1987297716 countsByYear W19872977162019 @default.
- W1987297716 countsByYear W19872977162020 @default.
- W1987297716 countsByYear W19872977162021 @default.
- W1987297716 countsByYear W19872977162022 @default.
- W1987297716 countsByYear W19872977162023 @default.
- W1987297716 crossrefType "journal-article" @default.
- W1987297716 hasAuthorship W1987297716A5016563954 @default.
- W1987297716 hasAuthorship W1987297716A5042586242 @default.
- W1987297716 hasAuthorship W1987297716A5046186509 @default.
- W1987297716 hasAuthorship W1987297716A5051798727 @default.
- W1987297716 hasAuthorship W1987297716A5066940650 @default.
- W1987297716 hasAuthorship W1987297716A5081210385 @default.
- W1987297716 hasConcept C105795698 @default.
- W1987297716 hasConcept C106131492 @default.
- W1987297716 hasConcept C111472728 @default.
- W1987297716 hasConcept C124101348 @default.
- W1987297716 hasConcept C138885662 @default.
- W1987297716 hasConcept C140779682 @default.
- W1987297716 hasConcept C165838908 @default.
- W1987297716 hasConcept C18903297 @default.
- W1987297716 hasConcept C205649164 @default.
- W1987297716 hasConcept C2778755073 @default.
- W1987297716 hasConcept C31972630 @default.
- W1987297716 hasConcept C33923547 @default.
- W1987297716 hasConcept C41008148 @default.
- W1987297716 hasConcept C58640448 @default.
- W1987297716 hasConcept C75553542 @default.
- W1987297716 hasConcept C86803240 @default.
- W1987297716 hasConceptScore W1987297716C105795698 @default.
- W1987297716 hasConceptScore W1987297716C106131492 @default.
- W1987297716 hasConceptScore W1987297716C111472728 @default.
- W1987297716 hasConceptScore W1987297716C124101348 @default.
- W1987297716 hasConceptScore W1987297716C138885662 @default.
- W1987297716 hasConceptScore W1987297716C140779682 @default.
- W1987297716 hasConceptScore W1987297716C165838908 @default.
- W1987297716 hasConceptScore W1987297716C18903297 @default.
- W1987297716 hasConceptScore W1987297716C205649164 @default.