Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987541312> ?p ?o ?g. }
- W1987541312 endingPage "2267" @default.
- W1987541312 startingPage "2255" @default.
- W1987541312 abstract "A small-scale Mach 5 blow down wind tunnel, with ample access for optical diagnostics and ability to generate steady-state nonequilibrium flows, has been designed and operated. The wind tunnel uses transverse repetitively pulsed nanosecond discharge, fully overlapped with a transverse DC discharge and operated at high plenum pressures (P0=0.5-1.0 atm) to load internal energy modes of nitrogen and oxygen molecules. The discharge remains stable at energy loadings of up to ~0.1 eV/molecule in nitrogen (discharge power up to 2.5 kW). The wind tunnel generates nonequilibrium nitrogen and air flows with steady-state run time of 5-10 seconds, translational / rotational temperature of T0~300-400 K, and estimated upper bound nitrogen vibrational temperature of Tv0~2,000 K. Internal energy mode disequilibrium in the flow is controlled by injecting nitric oxide, hydrogen, or water vapor into the subsonic flow between the discharge section and the nozzle throat. The effect of energy mode disequilibrium is studied in a flow over a cylinder model placed in the Mach 5 test section. The flow field in the supersonic test section is well predicted by a 3-D compressible Navier-Stokes flow code, indicating good flow quality. The supersonic flow field over the model is visualized by schlieren imaging and NO PLIF imaging, using a burst mode laser operated in the vicinity of 226 nm, at a pulse repetition rate of 10-20 kHz. The laser was operated in the injection-seeded mode, generating narrow linewidth (~0.1 cm -1 ) output for single-line NO excitation in the flow. Nitric oxide was either injected into the flow in the plenum or generated in a repetitively pulsed nanosecond discharge in dry air. Both single-pulse PLIF images and images integrated over 10-50 laser pulses have been obtained. Two single-line NO PLIF images on a NO(X,v˝=0→A,v´=0) transition are used for measurements of 2-D temperature distributions in nitrogen flows in the supersonic test section. Another single-line NO PLIF image on a NO(X,v˝=1→A,v´=1) transition is used to estimate NO vibrational temperature behind the bow shock, TV(NO)=550 ± 100 K. The NO vibrational temperature increases when the energy loading in the discharge is increased. Kinetic modeling calculations indicate that low NO vibrational temperature is due to fairly low vibrational energy loading per nitrogen molecule in the discharge. Schlieren images of a supersonic flow over the cylinder model demonstrate that the shock stand-off distance is reduced by approximately 5% when the discharge in the wind tunnel is in operation and water vapor or hydrogen are injected into the flow between the discharge section and the nozzle throat. This effect is attributed to additional heating of the flow in the plenum during relaxation of vibrationally excited nitrogen in the presence of water vapor or hydrogen." @default.
- W1987541312 created "2016-06-24" @default.
- W1987541312 creator A5003519759 @default.
- W1987541312 creator A5016380380 @default.
- W1987541312 creator A5024430907 @default.
- W1987541312 creator A5036813121 @default.
- W1987541312 creator A5064819163 @default.
- W1987541312 creator A5066090112 @default.
- W1987541312 creator A5076240889 @default.
- W1987541312 creator A5090001368 @default.
- W1987541312 date "2012-10-01" @default.
- W1987541312 modified "2023-09-23" @default.
- W1987541312 title "Development of a Mach 5 Nonequilibrium-Flow Wind Tunnel" @default.
- W1987541312 cites W1637837550 @default.
- W1987541312 cites W1980971723 @default.
- W1987541312 cites W1993942038 @default.
- W1987541312 cites W1994883204 @default.
- W1987541312 cites W2010264944 @default.
- W1987541312 cites W2026883706 @default.
- W1987541312 cites W2027768460 @default.
- W1987541312 cites W2033456472 @default.
- W1987541312 cites W2038952423 @default.
- W1987541312 cites W2041133286 @default.
- W1987541312 cites W2046649766 @default.
- W1987541312 cites W2062630641 @default.
- W1987541312 cites W2067541928 @default.
- W1987541312 cites W2072443383 @default.
- W1987541312 cites W2077587343 @default.
- W1987541312 cites W2079036738 @default.
- W1987541312 cites W2082122667 @default.
- W1987541312 cites W2097362677 @default.
- W1987541312 cites W2105158371 @default.
- W1987541312 cites W2134536572 @default.
- W1987541312 cites W2160872510 @default.
- W1987541312 cites W2315923234 @default.
- W1987541312 cites W2316499475 @default.
- W1987541312 cites W2318441544 @default.
- W1987541312 cites W2914804869 @default.
- W1987541312 cites W4245104830 @default.
- W1987541312 cites W4255934480 @default.
- W1987541312 cites W2135459353 @default.
- W1987541312 doi "https://doi.org/10.2514/1.j051605" @default.
- W1987541312 hasPublicationYear "2012" @default.
- W1987541312 type Work @default.
- W1987541312 sameAs 1987541312 @default.
- W1987541312 citedByCount "22" @default.
- W1987541312 countsByYear W19875413122012 @default.
- W1987541312 countsByYear W19875413122013 @default.
- W1987541312 countsByYear W19875413122014 @default.
- W1987541312 countsByYear W19875413122015 @default.
- W1987541312 countsByYear W19875413122016 @default.
- W1987541312 countsByYear W19875413122017 @default.
- W1987541312 countsByYear W19875413122018 @default.
- W1987541312 countsByYear W19875413122019 @default.
- W1987541312 countsByYear W19875413122020 @default.
- W1987541312 countsByYear W19875413122022 @default.
- W1987541312 crossrefType "journal-article" @default.
- W1987541312 hasAuthorship W1987541312A5003519759 @default.
- W1987541312 hasAuthorship W1987541312A5016380380 @default.
- W1987541312 hasAuthorship W1987541312A5024430907 @default.
- W1987541312 hasAuthorship W1987541312A5036813121 @default.
- W1987541312 hasAuthorship W1987541312A5064819163 @default.
- W1987541312 hasAuthorship W1987541312A5066090112 @default.
- W1987541312 hasAuthorship W1987541312A5076240889 @default.
- W1987541312 hasAuthorship W1987541312A5090001368 @default.
- W1987541312 hasConcept C100086909 @default.
- W1987541312 hasConcept C103838597 @default.
- W1987541312 hasConcept C11066151 @default.
- W1987541312 hasConcept C121332964 @default.
- W1987541312 hasConcept C123012627 @default.
- W1987541312 hasConcept C127313418 @default.
- W1987541312 hasConcept C127413603 @default.
- W1987541312 hasConcept C13393347 @default.
- W1987541312 hasConcept C146978453 @default.
- W1987541312 hasConcept C165231844 @default.
- W1987541312 hasConcept C178978397 @default.
- W1987541312 hasConcept C38349280 @default.
- W1987541312 hasConcept C57879066 @default.
- W1987541312 hasConcept C74859849 @default.
- W1987541312 hasConcept C97355855 @default.
- W1987541312 hasConceptScore W1987541312C100086909 @default.
- W1987541312 hasConceptScore W1987541312C103838597 @default.
- W1987541312 hasConceptScore W1987541312C11066151 @default.
- W1987541312 hasConceptScore W1987541312C121332964 @default.
- W1987541312 hasConceptScore W1987541312C123012627 @default.
- W1987541312 hasConceptScore W1987541312C127313418 @default.
- W1987541312 hasConceptScore W1987541312C127413603 @default.
- W1987541312 hasConceptScore W1987541312C13393347 @default.
- W1987541312 hasConceptScore W1987541312C146978453 @default.
- W1987541312 hasConceptScore W1987541312C165231844 @default.
- W1987541312 hasConceptScore W1987541312C178978397 @default.
- W1987541312 hasConceptScore W1987541312C38349280 @default.
- W1987541312 hasConceptScore W1987541312C57879066 @default.
- W1987541312 hasConceptScore W1987541312C74859849 @default.
- W1987541312 hasConceptScore W1987541312C97355855 @default.
- W1987541312 hasIssue "10" @default.
- W1987541312 hasLocation W19875413121 @default.
- W1987541312 hasOpenAccess W1987541312 @default.