Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987610851> ?p ?o ?g. }
- W1987610851 endingPage "4261" @default.
- W1987610851 startingPage "4245" @default.
- W1987610851 abstract "Magnetic resonance electrical impedance tomography (MREIT) is a technique that produces images of conductivity in tissues and phantoms. In this technique, electrical currents are applied to an object and the resulting magnetic flux density is measured using magnetic resonance imaging (MRI) and the conductivity distribution is reconstructed using these MRI data. Currently, the technique is used in research environments, primarily studying phantoms and animals. In order to translate MREIT to clinical applications, strict safety standards need to be established, especially for safe current limits. However, there are currently no standards for safe current limits specific to MREIT. Until such standards are established, human MREIT applications need to conform to existing electrical safety standards in medical instrumentation, such as IEC601. This protocol limits patient auxiliary currents to 100 µA for low frequencies. However, published MREIT studies have utilized currents 10-400 times larger than this limit, bringing into question whether the clinical applications of MREIT are attainable under current standards. In this study, we investigated the feasibility of MREIT to accurately reconstruct the relative conductivity of a simple agarose phantom using 200 µA total injected current and tested the performance of two MREIT reconstruction algorithms. These reconstruction algorithms used are the iterative sensitivity matrix method (SMM) by Ider and Birgul (1998 Elektrik 6 215-25) with Tikhonov regularization and the harmonic B(Z) proposed by Oh et al (2003 Magn. Reason. Med. 50 875-8). The reconstruction techniques were tested at both 200 µA and 5 mA injected currents to investigate their noise sensitivity at low and high current conditions. It should be noted that 200 µA total injected current into a cylindrical phantom generates only 14.7 µA current in imaging slice. Similarly, 5 mA total injected current results in 367 µA in imaging slice. Total acquisition time for 200 µA and 5 mA experiments was about 1 h and 8.5 min, respectively. The results demonstrate that conductivity imaging is possible at low currents using the suggested imaging parameters and reconstructing the images using iterative SMM with Tikhonov regularization, which appears to be more tolerant to noisy data than harmonic B(Z)." @default.
- W1987610851 created "2016-06-24" @default.
- W1987610851 creator A5037995126 @default.
- W1987610851 creator A5052364000 @default.
- W1987610851 creator A5087571672 @default.
- W1987610851 creator A5091206345 @default.
- W1987610851 date "2012-06-08" @default.
- W1987610851 modified "2023-09-24" @default.
- W1987610851 title "MREIT experiments with 200 µA injected currents: a feasibility study using two reconstruction algorithms, SMM and harmonic<i>B<sub>Z</sub></i>" @default.
- W1987610851 cites W148130144 @default.
- W1987610851 cites W163155618 @default.
- W1987610851 cites W1964661846 @default.
- W1987610851 cites W1964976958 @default.
- W1987610851 cites W1966505992 @default.
- W1987610851 cites W1967654956 @default.
- W1987610851 cites W1984546611 @default.
- W1987610851 cites W1985884345 @default.
- W1987610851 cites W1986264877 @default.
- W1987610851 cites W1988841010 @default.
- W1987610851 cites W1989457739 @default.
- W1987610851 cites W1996000112 @default.
- W1987610851 cites W1999442755 @default.
- W1987610851 cites W2024039516 @default.
- W1987610851 cites W2029511076 @default.
- W1987610851 cites W2031845609 @default.
- W1987610851 cites W2041800284 @default.
- W1987610851 cites W2047429829 @default.
- W1987610851 cites W2048418232 @default.
- W1987610851 cites W2050198790 @default.
- W1987610851 cites W2062091836 @default.
- W1987610851 cites W2064490468 @default.
- W1987610851 cites W2065109272 @default.
- W1987610851 cites W2065872255 @default.
- W1987610851 cites W2071672035 @default.
- W1987610851 cites W2080955914 @default.
- W1987610851 cites W2081687897 @default.
- W1987610851 cites W2084452771 @default.
- W1987610851 cites W2084925615 @default.
- W1987610851 cites W2101126957 @default.
- W1987610851 cites W2110055003 @default.
- W1987610851 cites W2112476383 @default.
- W1987610851 cites W2123970784 @default.
- W1987610851 cites W2124285457 @default.
- W1987610851 cites W2124496461 @default.
- W1987610851 cites W2168374324 @default.
- W1987610851 cites W2168775745 @default.
- W1987610851 cites W2168832646 @default.
- W1987610851 cites W2170382756 @default.
- W1987610851 doi "https://doi.org/10.1088/0031-9155/57/13/4245" @default.
- W1987610851 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3381422" @default.
- W1987610851 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22684125" @default.
- W1987610851 hasPublicationYear "2012" @default.
- W1987610851 type Work @default.
- W1987610851 sameAs 1987610851 @default.
- W1987610851 citedByCount "4" @default.
- W1987610851 countsByYear W19876108512012 @default.
- W1987610851 countsByYear W19876108512014 @default.
- W1987610851 countsByYear W19876108512021 @default.
- W1987610851 crossrefType "journal-article" @default.
- W1987610851 hasAuthorship W1987610851A5037995126 @default.
- W1987610851 hasAuthorship W1987610851A5052364000 @default.
- W1987610851 hasAuthorship W1987610851A5087571672 @default.
- W1987610851 hasAuthorship W1987610851A5091206345 @default.
- W1987610851 hasBestOaLocation W19876108512 @default.
- W1987610851 hasConcept C104293457 @default.
- W1987610851 hasConcept C11413529 @default.
- W1987610851 hasConcept C115961682 @default.
- W1987610851 hasConcept C120665830 @default.
- W1987610851 hasConcept C121332964 @default.
- W1987610851 hasConcept C134306372 @default.
- W1987610851 hasConcept C135252773 @default.
- W1987610851 hasConcept C152442038 @default.
- W1987610851 hasConcept C154945302 @default.
- W1987610851 hasConcept C33923547 @default.
- W1987610851 hasConcept C41008148 @default.
- W1987610851 hasConcept C46141821 @default.
- W1987610851 hasConcept C99498987 @default.
- W1987610851 hasConceptScore W1987610851C104293457 @default.
- W1987610851 hasConceptScore W1987610851C11413529 @default.
- W1987610851 hasConceptScore W1987610851C115961682 @default.
- W1987610851 hasConceptScore W1987610851C120665830 @default.
- W1987610851 hasConceptScore W1987610851C121332964 @default.
- W1987610851 hasConceptScore W1987610851C134306372 @default.
- W1987610851 hasConceptScore W1987610851C135252773 @default.
- W1987610851 hasConceptScore W1987610851C152442038 @default.
- W1987610851 hasConceptScore W1987610851C154945302 @default.
- W1987610851 hasConceptScore W1987610851C33923547 @default.
- W1987610851 hasConceptScore W1987610851C41008148 @default.
- W1987610851 hasConceptScore W1987610851C46141821 @default.
- W1987610851 hasConceptScore W1987610851C99498987 @default.
- W1987610851 hasIssue "13" @default.
- W1987610851 hasLocation W19876108511 @default.
- W1987610851 hasLocation W19876108512 @default.
- W1987610851 hasLocation W19876108513 @default.
- W1987610851 hasLocation W19876108514 @default.
- W1987610851 hasOpenAccess W1987610851 @default.
- W1987610851 hasPrimaryLocation W19876108511 @default.
- W1987610851 hasRelatedWork W1964976958 @default.