Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987637477> ?p ?o ?g. }
- W1987637477 endingPage "29" @default.
- W1987637477 startingPage "20" @default.
- W1987637477 abstract "Enhanced in-situ biodenitrification (EIB) is a potential technology for remediating nitrate-polluted groundwater. EIB aims to create optimal biodenitrification conditions through the addition of carbon sources, enabling the autochthonous microbial community to degrade nitrate via different redox pathways. Biogeochemical numerical models are useful tools for predicting and designing such biodenitrification applications. Compound-specific stable isotope analysis (CSIA) is another valuable method for determining the degree of nitrate transformation. Therefore, incorporating isotope fractionation in biogeochemical models combines the two tools and is a key step in the development of reactive transport models of EIB under field conditions. In this work, we developed such an integrated model using the Phreeqc code and calibrated the model with batch scale experimental data using either ethanol or glucose as external carbon sources. The model included the following: microbiological processes —exogenous and endogenous nitrate respiration coupled to microbial growth and decay; geochemical processes —precipitation or dissolution of calcite; and isotopic fractionation —δ15N-NO3−, δ18O-NO3−, and δ13C-DIC, incorporating the full δ13C isotope geochemistry involved in EIB. The modeled results fit well with the hydrochemical and isotopic experimental data. The model also incorporated nitrite accumulation observed during the glucose experiment. The biogeochemical model indicates that, depending on the added carbon source, calcite precipitates (using ethanol) or dissolves (using glucose). In both cases, changes in hydraulic conductivity can be induced for actual and long-term EIB applications. The incorporation of isotope fractionation in the model better enables to account for other natural attenuation processes, such as dilution and dispersion, in EIB applications at field scale. Both calibrated enrichment factors (+ 8‰ for ethanol and + 17‰ for glucose) suggest that an inverse fractionation effect occurred (in which the heavy isotope reacts faster than the light isotope) during their oxidation." @default.
- W1987637477 created "2016-06-24" @default.
- W1987637477 creator A5026220708 @default.
- W1987637477 creator A5039031677 @default.
- W1987637477 creator A5041148811 @default.
- W1987637477 creator A5052701240 @default.
- W1987637477 creator A5054556979 @default.
- W1987637477 date "2014-02-01" @default.
- W1987637477 modified "2023-09-23" @default.
- W1987637477 title "Integrated modeling of biogeochemical reactions and associated isotope fractionations at batch scale: A tool to monitor enhanced biodenitrification applications" @default.
- W1987637477 cites W14454605 @default.
- W1987637477 cites W1482499977 @default.
- W1987637477 cites W1556665743 @default.
- W1987637477 cites W1813742096 @default.
- W1987637477 cites W1964159732 @default.
- W1987637477 cites W1973802015 @default.
- W1987637477 cites W1975464590 @default.
- W1987637477 cites W1976214358 @default.
- W1987637477 cites W1981921533 @default.
- W1987637477 cites W1984257790 @default.
- W1987637477 cites W1988220957 @default.
- W1987637477 cites W1990328747 @default.
- W1987637477 cites W2005558465 @default.
- W1987637477 cites W2009234708 @default.
- W1987637477 cites W2022296688 @default.
- W1987637477 cites W2030843616 @default.
- W1987637477 cites W2039843379 @default.
- W1987637477 cites W2039997533 @default.
- W1987637477 cites W2041209591 @default.
- W1987637477 cites W2044251033 @default.
- W1987637477 cites W2045008648 @default.
- W1987637477 cites W2051028201 @default.
- W1987637477 cites W2056857969 @default.
- W1987637477 cites W2059348195 @default.
- W1987637477 cites W2067884220 @default.
- W1987637477 cites W2068988298 @default.
- W1987637477 cites W2069054431 @default.
- W1987637477 cites W2072708571 @default.
- W1987637477 cites W2079145970 @default.
- W1987637477 cites W2089686530 @default.
- W1987637477 cites W2093054517 @default.
- W1987637477 cites W2093060611 @default.
- W1987637477 cites W2094084773 @default.
- W1987637477 cites W2094907505 @default.
- W1987637477 cites W2120803443 @default.
- W1987637477 cites W21229488 @default.
- W1987637477 cites W2128868097 @default.
- W1987637477 cites W2132407476 @default.
- W1987637477 cites W2132581380 @default.
- W1987637477 cites W2161784728 @default.
- W1987637477 cites W2163523522 @default.
- W1987637477 cites W2167280064 @default.
- W1987637477 cites W2171215587 @default.
- W1987637477 cites W4240376155 @default.
- W1987637477 cites W4242514972 @default.
- W1987637477 cites W70521757 @default.
- W1987637477 cites W90950234 @default.
- W1987637477 doi "https://doi.org/10.1016/j.chemgeo.2013.12.003" @default.
- W1987637477 hasPublicationYear "2014" @default.
- W1987637477 type Work @default.
- W1987637477 sameAs 1987637477 @default.
- W1987637477 citedByCount "22" @default.
- W1987637477 countsByYear W19876374772014 @default.
- W1987637477 countsByYear W19876374772015 @default.
- W1987637477 countsByYear W19876374772016 @default.
- W1987637477 countsByYear W19876374772017 @default.
- W1987637477 countsByYear W19876374772018 @default.
- W1987637477 countsByYear W19876374772019 @default.
- W1987637477 countsByYear W19876374772020 @default.
- W1987637477 countsByYear W19876374772021 @default.
- W1987637477 countsByYear W19876374772023 @default.
- W1987637477 crossrefType "journal-article" @default.
- W1987637477 hasAuthorship W1987637477A5026220708 @default.
- W1987637477 hasAuthorship W1987637477A5039031677 @default.
- W1987637477 hasAuthorship W1987637477A5041148811 @default.
- W1987637477 hasAuthorship W1987637477A5052701240 @default.
- W1987637477 hasAuthorship W1987637477A5054556979 @default.
- W1987637477 hasConcept C107872376 @default.
- W1987637477 hasConcept C111368507 @default.
- W1987637477 hasConcept C121332964 @default.
- W1987637477 hasConcept C127313418 @default.
- W1987637477 hasConcept C146458902 @default.
- W1987637477 hasConcept C178790620 @default.
- W1987637477 hasConcept C185592680 @default.
- W1987637477 hasConcept C187320778 @default.
- W1987637477 hasConcept C22117777 @default.
- W1987637477 hasConcept C2776384668 @default.
- W1987637477 hasConcept C2779334269 @default.
- W1987637477 hasConcept C39432304 @default.
- W1987637477 hasConcept C51813073 @default.
- W1987637477 hasConcept C62520636 @default.
- W1987637477 hasConcept C71915725 @default.
- W1987637477 hasConcept C76177295 @default.
- W1987637477 hasConcept C97428945 @default.
- W1987637477 hasConceptScore W1987637477C107872376 @default.
- W1987637477 hasConceptScore W1987637477C111368507 @default.
- W1987637477 hasConceptScore W1987637477C121332964 @default.
- W1987637477 hasConceptScore W1987637477C127313418 @default.