Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987733777> ?p ?o ?g. }
- W1987733777 endingPage "205" @default.
- W1987733777 startingPage "181" @default.
- W1987733777 abstract "This paper introduces a multivariate Bayesian (MVB) scheme to decode or recognise brain states from neuroimages. It resolves the ill-posed many-to-one mapping, from voxel values or data features to a target variable, using a parametric empirical or hierarchical Bayesian model. This model is inverted using standard variational techniques, in this case expectation maximisation, to furnish the model evidence and the conditional density of the model's parameters. This allows one to compare different models or hypotheses about the mapping from functional or structural anatomy to perceptual and behavioural consequences (or their deficits). We frame this approach in terms of decoding measured brain states to predict or classify outcomes using the rhetoric established in pattern classification of neuroimaging data. However, the aim of MVB is not to predict (because the outcomes are known) but to enable inference on different models of structure-function mappings; such as distributed and sparse representations. This allows one to optimise the model itself and produce predictions that outperform standard pattern classification approaches, like support vector machines. Technically, the model inversion and inference uses the same empirical Bayesian procedures developed for ill-posed inverse problems (e.g., source reconstruction in EEG). However, the MVB scheme used here extends this approach to include a greedy search for sparse solutions. It reduces the problem to the same form used in Gaussian process modelling, which affords a generic and efficient scheme for model optimisation and evaluating model evidence. We illustrate MVB using simulated and real data, with a special focus on model comparison; where models can differ in the form of the mapping (i.e., neuronal representation) within one region, or in the (combination of) regions per se." @default.
- W1987733777 created "2016-06-24" @default.
- W1987733777 creator A5020158673 @default.
- W1987733777 creator A5023717049 @default.
- W1987733777 creator A5029410349 @default.
- W1987733777 creator A5036416110 @default.
- W1987733777 creator A5057602104 @default.
- W1987733777 creator A5074881456 @default.
- W1987733777 creator A5086852785 @default.
- W1987733777 date "2008-01-01" @default.
- W1987733777 modified "2023-10-16" @default.
- W1987733777 title "Bayesian decoding of brain images" @default.
- W1987733777 cites W1965144006 @default.
- W1987733777 cites W1970710404 @default.
- W1987733777 cites W1977463519 @default.
- W1987733777 cites W1982585616 @default.
- W1987733777 cites W1987264988 @default.
- W1987733777 cites W1995466435 @default.
- W1987733777 cites W1997912729 @default.
- W1987733777 cites W2024986101 @default.
- W1987733777 cites W2041716195 @default.
- W1987733777 cites W2048631316 @default.
- W1987733777 cites W2068403333 @default.
- W1987733777 cites W2073683361 @default.
- W1987733777 cites W2075931477 @default.
- W1987733777 cites W2085311558 @default.
- W1987733777 cites W2101562854 @default.
- W1987733777 cites W2106664807 @default.
- W1987733777 cites W2113257799 @default.
- W1987733777 cites W2113525305 @default.
- W1987733777 cites W2115462438 @default.
- W1987733777 cites W2116723448 @default.
- W1987733777 cites W2123923307 @default.
- W1987733777 cites W2125211336 @default.
- W1987733777 cites W2128973832 @default.
- W1987733777 cites W2130095305 @default.
- W1987733777 cites W2139037554 @default.
- W1987733777 cites W2159383776 @default.
- W1987733777 cites W2163201100 @default.
- W1987733777 cites W2166471921 @default.
- W1987733777 cites W2168016523 @default.
- W1987733777 cites W2169005503 @default.
- W1987733777 cites W2172168442 @default.
- W1987733777 cites W2418782337 @default.
- W1987733777 cites W4211177544 @default.
- W1987733777 cites W4230920194 @default.
- W1987733777 cites W4231623949 @default.
- W1987733777 cites W4238398947 @default.
- W1987733777 doi "https://doi.org/10.1016/j.neuroimage.2007.08.013" @default.
- W1987733777 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/17919928" @default.
- W1987733777 hasPublicationYear "2008" @default.
- W1987733777 type Work @default.
- W1987733777 sameAs 1987733777 @default.
- W1987733777 citedByCount "182" @default.
- W1987733777 countsByYear W19877337772012 @default.
- W1987733777 countsByYear W19877337772013 @default.
- W1987733777 countsByYear W19877337772014 @default.
- W1987733777 countsByYear W19877337772015 @default.
- W1987733777 countsByYear W19877337772016 @default.
- W1987733777 countsByYear W19877337772017 @default.
- W1987733777 countsByYear W19877337772018 @default.
- W1987733777 countsByYear W19877337772019 @default.
- W1987733777 countsByYear W19877337772020 @default.
- W1987733777 countsByYear W19877337772021 @default.
- W1987733777 countsByYear W19877337772022 @default.
- W1987733777 countsByYear W19877337772023 @default.
- W1987733777 crossrefType "journal-article" @default.
- W1987733777 hasAuthorship W1987733777A5020158673 @default.
- W1987733777 hasAuthorship W1987733777A5023717049 @default.
- W1987733777 hasAuthorship W1987733777A5029410349 @default.
- W1987733777 hasAuthorship W1987733777A5036416110 @default.
- W1987733777 hasAuthorship W1987733777A5057602104 @default.
- W1987733777 hasAuthorship W1987733777A5074881456 @default.
- W1987733777 hasAuthorship W1987733777A5086852785 @default.
- W1987733777 hasBestOaLocation W19877337772 @default.
- W1987733777 hasConcept C105795698 @default.
- W1987733777 hasConcept C107673813 @default.
- W1987733777 hasConcept C11413529 @default.
- W1987733777 hasConcept C117251300 @default.
- W1987733777 hasConcept C119857082 @default.
- W1987733777 hasConcept C121332964 @default.
- W1987733777 hasConcept C153180895 @default.
- W1987733777 hasConcept C154945302 @default.
- W1987733777 hasConcept C160234255 @default.
- W1987733777 hasConcept C163716315 @default.
- W1987733777 hasConcept C2776214188 @default.
- W1987733777 hasConcept C33923547 @default.
- W1987733777 hasConcept C41008148 @default.
- W1987733777 hasConcept C57273362 @default.
- W1987733777 hasConcept C57830394 @default.
- W1987733777 hasConcept C61326573 @default.
- W1987733777 hasConcept C62520636 @default.
- W1987733777 hasConceptScore W1987733777C105795698 @default.
- W1987733777 hasConceptScore W1987733777C107673813 @default.
- W1987733777 hasConceptScore W1987733777C11413529 @default.
- W1987733777 hasConceptScore W1987733777C117251300 @default.
- W1987733777 hasConceptScore W1987733777C119857082 @default.
- W1987733777 hasConceptScore W1987733777C121332964 @default.