Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987759953> ?p ?o ?g. }
- W1987759953 endingPage "121" @default.
- W1987759953 startingPage "109" @default.
- W1987759953 abstract "The biosynthesis of the hemes, chlorophylls, corrins and other tetrapyrroles begins with the synthesis of 5-aminolevulinic acid (ALA). The pathway is highly conserved except for the synthesis of ALA which is derived from glycine and succinyl CoA (C4) in most eukaryotes and from glutamate (C5) in most bacteria and in green plants. In C5, glutamyl-tRNA synthetase (GTS) converts glutamate to glutamyl-tRNA (glu-tRNA), which is reduced by glutamyl-tRNA reductase (GTR) to glutamyl-1-semialdehyde (GSA), which is converted by aminotransferase (GSA-AT) to ALA. Since GTS is also involved in protein synthesis and GSA can be converted to ALA non-enzymatically, it is highly probable that control of ALA synthesis and thus of the whole pathway resides in the GTR step. InEscherichia coli, GTR is the gene product ofhemA. BL21(DE3), a protease-deficient strain which contains the T7 RNA polymerase gene in front of alac promoter, was transformed with a pET14b-based vector, pWC01, harboringhemA in front of a T7 promoter and ORF1 which is transcribed in the opposite direction. The transformed strain, WC1201, secreted ALA and porphyrins into the medium. Induction of expression ofhemA by WC1201 was optimized for concentration of inducer (IPTG, 5 mM), temperature (37°C), presence of betaine and sorbitol (no change) and time of induction (2 h). GTR was observable as a 46 kDa band by Brilliant blue G staining of SDS-PAGE gels. Sonicates of the induction mixture exhibited strong ALA synthesis activity which was enhanced by tRNAglu. Most of the activity was in the supernatant of the sonicate indicating that GTR is a soluble enzyme. The induced strain had more GTS activity than the uninduced strain which had more GTS activity than its parent wild-type strain. Autoradiography on native gradient PAGE showed that GTR expressed in vivo by induction of WC1201 had a molecular weight of approx. 117 kDa. Gel filtration of the induced sonicate showed a peak of enzymatic activity at about 126 kDa. When pET14b- or pUC19-based plasmids harboringhemA and ORF1, or importantly, a pUC19-based plasmid harboring onlyhemA and not ORF1, were expressed in an in vitro transcription-translation system, native gradient PAGE showed a product with a molecular weight of approximately 175 kDA. This expression was higher in the presence of tRNAglu. When the 117 kDa and 175 kDa proteins were excised from their native gels respectively, and run on SDS PAGE, autoradiography showed bands at 46 kDa. We conclude that GTR is present in both high molecular weight species. Since overexpression ofhemA from pET14b-based plasmids is associated with increased glutamyl-tRNA synthetase activity, the 175 kDa species may represent different complexes of GTR, GTS and glutamyl-tRNA as observed inChlamydomonas and the 117–126 kDa species may be an dimer of GTR associated with glu-tRNA or a complex of GTR, GTS and glu-tRNA. These possibilities are being investigated." @default.
- W1987759953 created "2016-06-24" @default.
- W1987759953 creator A5015296361 @default.
- W1987759953 creator A5029205187 @default.
- W1987759953 creator A5034798228 @default.
- W1987759953 creator A5058069334 @default.
- W1987759953 creator A5060572129 @default.
- W1987759953 date "1996-11-01" @default.
- W1987759953 modified "2023-10-10" @default.
- W1987759953 title "Expression of glutamyl-tRNA reductase inEscherichia coli" @default.
- W1987759953 cites W1182487370 @default.
- W1987759953 cites W1481208553 @default.
- W1987759953 cites W1496815249 @default.
- W1987759953 cites W1510702873 @default.
- W1987759953 cites W1514624777 @default.
- W1987759953 cites W1515235319 @default.
- W1987759953 cites W1519211795 @default.
- W1987759953 cites W1585993787 @default.
- W1987759953 cites W1586774152 @default.
- W1987759953 cites W1601579247 @default.
- W1987759953 cites W1665143716 @default.
- W1987759953 cites W1679478715 @default.
- W1987759953 cites W177430054 @default.
- W1987759953 cites W1803648067 @default.
- W1987759953 cites W182540526 @default.
- W1987759953 cites W1873199501 @default.
- W1987759953 cites W1905553040 @default.
- W1987759953 cites W1957104942 @default.
- W1987759953 cites W1971403399 @default.
- W1987759953 cites W1972238996 @default.
- W1987759953 cites W1981916673 @default.
- W1987759953 cites W1984698700 @default.
- W1987759953 cites W1995858197 @default.
- W1987759953 cites W1999548403 @default.
- W1987759953 cites W2005053065 @default.
- W1987759953 cites W2012920442 @default.
- W1987759953 cites W2020949578 @default.
- W1987759953 cites W2021719280 @default.
- W1987759953 cites W2021757419 @default.
- W1987759953 cites W2022203308 @default.
- W1987759953 cites W2025426022 @default.
- W1987759953 cites W2027601482 @default.
- W1987759953 cites W2027621691 @default.
- W1987759953 cites W2028132056 @default.
- W1987759953 cites W2032451049 @default.
- W1987759953 cites W2044000451 @default.
- W1987759953 cites W2057701698 @default.
- W1987759953 cites W2058464164 @default.
- W1987759953 cites W2062717245 @default.
- W1987759953 cites W2063478749 @default.
- W1987759953 cites W2077701024 @default.
- W1987759953 cites W2079595216 @default.
- W1987759953 cites W2081608055 @default.
- W1987759953 cites W2086158155 @default.
- W1987759953 cites W2086881966 @default.
- W1987759953 cites W2100837269 @default.
- W1987759953 cites W2117302720 @default.
- W1987759953 cites W2136233218 @default.
- W1987759953 cites W2137024316 @default.
- W1987759953 cites W2317072956 @default.
- W1987759953 cites W2326698795 @default.
- W1987759953 cites W2395002511 @default.
- W1987759953 cites W2398623442 @default.
- W1987759953 doi "https://doi.org/10.1016/s0167-4781(96)00117-0" @default.
- W1987759953 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/8950186" @default.
- W1987759953 hasPublicationYear "1996" @default.
- W1987759953 type Work @default.
- W1987759953 sameAs 1987759953 @default.
- W1987759953 citedByCount "10" @default.
- W1987759953 countsByYear W19877599532017 @default.
- W1987759953 countsByYear W19877599532019 @default.
- W1987759953 crossrefType "journal-article" @default.
- W1987759953 hasAuthorship W1987759953A5015296361 @default.
- W1987759953 hasAuthorship W1987759953A5029205187 @default.
- W1987759953 hasAuthorship W1987759953A5034798228 @default.
- W1987759953 hasAuthorship W1987759953A5058069334 @default.
- W1987759953 hasAuthorship W1987759953A5060572129 @default.
- W1987759953 hasConcept C104317684 @default.
- W1987759953 hasConcept C134651460 @default.
- W1987759953 hasConcept C153911025 @default.
- W1987759953 hasConcept C153957851 @default.
- W1987759953 hasConcept C170344550 @default.
- W1987759953 hasConcept C181199279 @default.
- W1987759953 hasConcept C185592680 @default.
- W1987759953 hasConcept C2225953 @default.
- W1987759953 hasConcept C2776441376 @default.
- W1987759953 hasConcept C2776449523 @default.
- W1987759953 hasConcept C2780048736 @default.
- W1987759953 hasConcept C33161422 @default.
- W1987759953 hasConcept C3675279 @default.
- W1987759953 hasConcept C40767141 @default.
- W1987759953 hasConcept C547475151 @default.
- W1987759953 hasConcept C553450214 @default.
- W1987759953 hasConcept C55493867 @default.
- W1987759953 hasConcept C67705224 @default.
- W1987759953 hasConcept C86803240 @default.
- W1987759953 hasConceptScore W1987759953C104317684 @default.
- W1987759953 hasConceptScore W1987759953C134651460 @default.