Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987805654> ?p ?o ?g. }
- W1987805654 endingPage "829" @default.
- W1987805654 startingPage "817" @default.
- W1987805654 abstract "Abstract Human bone marrow mesenchymal stem cells (hMSCs) are promising candidates for cell therapy and tissue engineering. However, the life span of hMSCs during in vitro culture is limited. Human telomerase catalytic subunit (hTERT) gene transduction could prolong the life span of hMSCs and maintain their potential of osteogenic differentiation. Therefore, hMSCs transduced with hTERT (hTERT‐hMSCs) could be used as a cell model for in vitro tissue engineering experiment because of its prolonged life span and normal cellular properties. A perfusion culture system for proliferation and osteogenesis of hTERT‐hMSCs or primary hMSCs in porous polylactic glycolic acid (PLGA) scaffolds is described here. A cell suspension of hTERT‐hMSCs or primary hMSCs (5 × 10 5 cells/250 μL) was seeded and then cultured for 12 days in porous PLGA scaffolds (10 mm in diameter, 3 mm in height) under both static and perfusion culture systems. The seeding efficiency, proliferation, distribution and viability, and osteogenesis of cells in scaffolds were evaluated. The perfusion method generated higher scaffold cellularity and proliferation of cells in scaffolds, and hTERT‐hMSCs showed the higher proliferation potential than primary hMSCs. Results from fluorescein diacetate (FDA) staining and scanning electron microscopy (SEM) demonstrated homogeneous seeding, proliferation, and viability of hTERT‐hMSCs throughout the scaffolds in the perfusion culture system. On the contrary, the static culture yielded polarized proliferation favoring the outer and upper scaffold surfaces, and resulted in decreasing of cells in the central section of the scaffolds. A flow rate of 0.5 mL/min had an effect on osteogenic differentiation of cells in scaffolds. However, the osteogenic medium promoted the osteogenic efficiency of cells. Scaffolds with hTERT‐hMSCs had the higher osteogenesis than scaffolds with primary hMSCs. Thus, these results suggest that the flow condition not only allow a better seeding efficiency and homogeneity but also facilitate uniform proliferation and osteogenic differentiation of hTERT‐hMSCs in scaffolds. hTERT‐hMSCs could be used as stem cell candidates for bone tissue engineering experiments. © 2009 Wiley Periodicals, Inc. J Biomed Mater Res, 2010" @default.
- W1987805654 created "2016-06-24" @default.
- W1987805654 creator A5005877687 @default.
- W1987805654 creator A5013739843 @default.
- W1987805654 creator A5019038275 @default.
- W1987805654 creator A5026422222 @default.
- W1987805654 creator A5032553354 @default.
- W1987805654 creator A5033245675 @default.
- W1987805654 creator A5051258987 @default.
- W1987805654 creator A5055568202 @default.
- W1987805654 creator A5055877565 @default.
- W1987805654 creator A5068845676 @default.
- W1987805654 creator A5084306160 @default.
- W1987805654 date "2009-03-11" @default.
- W1987805654 modified "2023-10-10" @default.
- W1987805654 title "Proliferation and osteogenesis of immortalized bone marrow-derived mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture" @default.
- W1987805654 cites W103352892 @default.
- W1987805654 cites W1873184289 @default.
- W1987805654 cites W1980000457 @default.
- W1987805654 cites W1990968557 @default.
- W1987805654 cites W1996590094 @default.
- W1987805654 cites W2001895901 @default.
- W1987805654 cites W2003262421 @default.
- W1987805654 cites W2004247546 @default.
- W1987805654 cites W2005848913 @default.
- W1987805654 cites W2009487893 @default.
- W1987805654 cites W2011628763 @default.
- W1987805654 cites W2014269161 @default.
- W1987805654 cites W2015639818 @default.
- W1987805654 cites W2017622407 @default.
- W1987805654 cites W2021691013 @default.
- W1987805654 cites W2033514910 @default.
- W1987805654 cites W2035176325 @default.
- W1987805654 cites W2039767341 @default.
- W1987805654 cites W2049680421 @default.
- W1987805654 cites W2059442046 @default.
- W1987805654 cites W2075808770 @default.
- W1987805654 cites W2080386358 @default.
- W1987805654 cites W2081257648 @default.
- W1987805654 cites W2085834775 @default.
- W1987805654 cites W2086511139 @default.
- W1987805654 cites W2088686025 @default.
- W1987805654 cites W2091395040 @default.
- W1987805654 cites W2091526175 @default.
- W1987805654 cites W2095114292 @default.
- W1987805654 cites W2101510186 @default.
- W1987805654 cites W2102179078 @default.
- W1987805654 cites W2106122256 @default.
- W1987805654 cites W2106346796 @default.
- W1987805654 cites W2108482850 @default.
- W1987805654 cites W2111903386 @default.
- W1987805654 cites W2113887763 @default.
- W1987805654 cites W2119610794 @default.
- W1987805654 cites W2124318512 @default.
- W1987805654 cites W2147762577 @default.
- W1987805654 cites W2152198035 @default.
- W1987805654 cites W2156416604 @default.
- W1987805654 cites W2156515222 @default.
- W1987805654 cites W2157862070 @default.
- W1987805654 cites W2158048826 @default.
- W1987805654 cites W2164917360 @default.
- W1987805654 cites W2174322495 @default.
- W1987805654 cites W3028308266 @default.
- W1987805654 cites W4211147424 @default.
- W1987805654 cites W4243820570 @default.
- W1987805654 cites W80132655 @default.
- W1987805654 doi "https://doi.org/10.1002/jbm.a.32378" @default.
- W1987805654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/19280635" @default.
- W1987805654 hasPublicationYear "2009" @default.
- W1987805654 type Work @default.
- W1987805654 sameAs 1987805654 @default.
- W1987805654 citedByCount "17" @default.
- W1987805654 countsByYear W19878056542013 @default.
- W1987805654 countsByYear W19878056542014 @default.
- W1987805654 countsByYear W19878056542017 @default.
- W1987805654 countsByYear W19878056542018 @default.
- W1987805654 countsByYear W19878056542019 @default.
- W1987805654 countsByYear W19878056542020 @default.
- W1987805654 crossrefType "journal-article" @default.
- W1987805654 hasAuthorship W1987805654A5005877687 @default.
- W1987805654 hasAuthorship W1987805654A5013739843 @default.
- W1987805654 hasAuthorship W1987805654A5019038275 @default.
- W1987805654 hasAuthorship W1987805654A5026422222 @default.
- W1987805654 hasAuthorship W1987805654A5032553354 @default.
- W1987805654 hasAuthorship W1987805654A5033245675 @default.
- W1987805654 hasAuthorship W1987805654A5051258987 @default.
- W1987805654 hasAuthorship W1987805654A5055568202 @default.
- W1987805654 hasAuthorship W1987805654A5055877565 @default.
- W1987805654 hasAuthorship W1987805654A5068845676 @default.
- W1987805654 hasAuthorship W1987805654A5084306160 @default.
- W1987805654 hasConcept C104317684 @default.
- W1987805654 hasConcept C125593758 @default.
- W1987805654 hasConcept C136229726 @default.
- W1987805654 hasConcept C155672457 @default.
- W1987805654 hasConcept C171250308 @default.
- W1987805654 hasConcept C185592680 @default.
- W1987805654 hasConcept C192562407 @default.
- W1987805654 hasConcept C198826908 @default.