Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987827901> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W1987827901 endingPage "862" @default.
- W1987827901 startingPage "845" @default.
- W1987827901 abstract "Abstract This article develops a method of calculating iterative estimates of the coefficients of a set of linear regression equations. There are p equations such that the explanatory variables are non-stochastic and it is assumed that the random disturbances of at least one pair of equations are correlated. Provided that either different explanatory variables enter the various equations or that if the same explanatory variables enter then the observations are different, it is possible to obtain estimators that are asymptotically more efficient than the simple one-at-a-time least squares estimators. The estimators developed herein are calculated recursively using the Gauss-Seidel method of iteration. It is shown that all of the iterations are asymptotically normal, and that in the limit the iterations have the same asymptotic distribution as the generalized least squares estimator proposed by Zellner. The iterative estimators directly exploit the correlations among the random disturbances. In addition p linear regression equations are defined such that in the ith equation the dependent variable is the residual of the original ith equation and the p − 1 “explanatory” variables are the residuals of all other regressions. It is shown that the regression coefficients of these residuals can be estimated recursively, jointly with the original regression coefficients, or directly from the one-at-a-time least squares residuals. All of these estimators of the regression coefficients of the random disturbances converge in distribution to the same multivariate normal law." @default.
- W1987827901 created "2016-06-24" @default.
- W1987827901 creator A5025432002 @default.
- W1987827901 date "1964-09-01" @default.
- W1987827901 modified "2023-10-16" @default.
- W1987827901 title "Iterative Estimation of a Set of Linear Regression Equations" @default.
- W1987827901 cites W2030459755 @default.
- W1987827901 cites W2031173376 @default.
- W1987827901 cites W2094514178 @default.
- W1987827901 cites W2107679950 @default.
- W1987827901 cites W2320227403 @default.
- W1987827901 cites W4229762230 @default.
- W1987827901 cites W4252344625 @default.
- W1987827901 doi "https://doi.org/10.1080/01621459.1964.10480731" @default.
- W1987827901 hasPublicationYear "1964" @default.
- W1987827901 type Work @default.
- W1987827901 sameAs 1987827901 @default.
- W1987827901 citedByCount "95" @default.
- W1987827901 countsByYear W19878279012012 @default.
- W1987827901 countsByYear W19878279012013 @default.
- W1987827901 countsByYear W19878279012014 @default.
- W1987827901 countsByYear W19878279012015 @default.
- W1987827901 countsByYear W19878279012016 @default.
- W1987827901 countsByYear W19878279012017 @default.
- W1987827901 countsByYear W19878279012018 @default.
- W1987827901 countsByYear W19878279012019 @default.
- W1987827901 countsByYear W19878279012020 @default.
- W1987827901 countsByYear W19878279012022 @default.
- W1987827901 crossrefType "journal-article" @default.
- W1987827901 hasAuthorship W1987827901A5025432002 @default.
- W1987827901 hasConcept C105795698 @default.
- W1987827901 hasConcept C134306372 @default.
- W1987827901 hasConcept C149769383 @default.
- W1987827901 hasConcept C152877465 @default.
- W1987827901 hasConcept C170036204 @default.
- W1987827901 hasConcept C185429906 @default.
- W1987827901 hasConcept C188649462 @default.
- W1987827901 hasConcept C204016326 @default.
- W1987827901 hasConcept C24851441 @default.
- W1987827901 hasConcept C28826006 @default.
- W1987827901 hasConcept C33923547 @default.
- W1987827901 hasConcept C48921125 @default.
- W1987827901 hasConcept C65778772 @default.
- W1987827901 hasConcept C78045399 @default.
- W1987827901 hasConcept C9936470 @default.
- W1987827901 hasConceptScore W1987827901C105795698 @default.
- W1987827901 hasConceptScore W1987827901C134306372 @default.
- W1987827901 hasConceptScore W1987827901C149769383 @default.
- W1987827901 hasConceptScore W1987827901C152877465 @default.
- W1987827901 hasConceptScore W1987827901C170036204 @default.
- W1987827901 hasConceptScore W1987827901C185429906 @default.
- W1987827901 hasConceptScore W1987827901C188649462 @default.
- W1987827901 hasConceptScore W1987827901C204016326 @default.
- W1987827901 hasConceptScore W1987827901C24851441 @default.
- W1987827901 hasConceptScore W1987827901C28826006 @default.
- W1987827901 hasConceptScore W1987827901C33923547 @default.
- W1987827901 hasConceptScore W1987827901C48921125 @default.
- W1987827901 hasConceptScore W1987827901C65778772 @default.
- W1987827901 hasConceptScore W1987827901C78045399 @default.
- W1987827901 hasConceptScore W1987827901C9936470 @default.
- W1987827901 hasIssue "307" @default.
- W1987827901 hasLocation W19878279011 @default.
- W1987827901 hasOpenAccess W1987827901 @default.
- W1987827901 hasPrimaryLocation W19878279011 @default.
- W1987827901 hasRelatedWork W1863092522 @default.
- W1987827901 hasRelatedWork W1985823979 @default.
- W1987827901 hasRelatedWork W1987827901 @default.
- W1987827901 hasRelatedWork W2049219354 @default.
- W1987827901 hasRelatedWork W2113713484 @default.
- W1987827901 hasRelatedWork W2360629477 @default.
- W1987827901 hasRelatedWork W3125148703 @default.
- W1987827901 hasRelatedWork W4225414656 @default.
- W1987827901 hasRelatedWork W4291492812 @default.
- W1987827901 hasRelatedWork W4312463433 @default.
- W1987827901 hasVolume "59" @default.
- W1987827901 isParatext "false" @default.
- W1987827901 isRetracted "false" @default.
- W1987827901 magId "1987827901" @default.
- W1987827901 workType "article" @default.