Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987871646> ?p ?o ?g. }
- W1987871646 abstract "We investigate the dynamics and gravitational-wave (GW) emission in the binary merger of equal-mass black holes as obtained from numerical relativity simulations. The simulations were performed with an evolution code based on generalized harmonic coordinates developed by Pretorius, and used quasiequilibrium initial-data sets constructed by Cook and Pfeiffer. Results from the evolution of three sets of initial data are explored in detail, corresponding to different initial separations of the black holes, and exhibit between 2--8 GW cycles before coalescence. We find that to a good approximation the inspiral phase of the evolution is quasicircular, followed by a ``blurred, quasicircular plunge'' lasting for about 1--1.5 GW cycles. After this plunge the GW frequency decouples from the orbital frequency, and we define this time to be the start of the merger phase. Roughly 10--15 M separates the time between the beginning of the merger phase and when we are able to extract quasinormal ring-down modes from gravitational waves emitted by the newly formed black hole. This suggests that the merger lasts for a correspondingly short amount of time, approximately 0.5--0.75 of a full GW cycle. We present first-order comparisons between analytical models of the various stages of the merger and the numerical results---more detailed and accurate comparisons will need to await numerical simulations with higher accuracy, better control of systemic errors (including coordinate artifacts), and initial configurations where the binaries are further separated. During the inspiral, we find that if the orbital phase is well modeled, the leading order Newtonian quadrupole formula is able to match both the amplitude and phase of the numerical GW quite accurately until close to the point of merger. We provide comparisons between the numerical results and analytical predictions based on the adiabatic post-Newtonian (PN) and nonadiabatic resummed-PN models (effective-one-body and Pad'e models). For all models considered, 3PN and 3.5PN orders match the inspiral numerical data the best. From the ring-down portion of the GW, we extract the fundamental quasinormal mode and several of the overtones. Finally, we estimate the optimal signal-to-noise ratio (SNR) for typical binaries detectable by GW experiments. We find that, when the merger and ring-down phases are included, binaries with total mass larger than $40{M}_{ensuremath{bigodot}}$ (sources for ground-based detectors) are brought in band and can be detected with signal-to-noise up to $ensuremath{approx}15$ at 100 Mpc, whereas for binaries with total mass larger than $2ifmmodetimeselsetexttimesfi{}{10}^{6}{M}_{ensuremath{bigodot}}$ (sources for space-based detectors) the SNR can be $ensuremath{approx}{10}^{4}$ at 1 Gpc." @default.
- W1987871646 created "2016-06-24" @default.
- W1987871646 creator A5004437377 @default.
- W1987871646 creator A5019617791 @default.
- W1987871646 creator A5074466726 @default.
- W1987871646 date "2007-06-21" @default.
- W1987871646 modified "2023-10-14" @default.
- W1987871646 title "Inspiral, merger, and ring-down of equal-mass black-hole binaries" @default.
- W1987871646 cites W1601733277 @default.
- W1987871646 cites W1964093289 @default.
- W1987871646 cites W1966973630 @default.
- W1987871646 cites W1968369949 @default.
- W1987871646 cites W1968553812 @default.
- W1987871646 cites W1968985209 @default.
- W1987871646 cites W1970608274 @default.
- W1987871646 cites W1971068715 @default.
- W1987871646 cites W1971420108 @default.
- W1987871646 cites W1973259509 @default.
- W1987871646 cites W1975139933 @default.
- W1987871646 cites W1977761638 @default.
- W1987871646 cites W1979995289 @default.
- W1987871646 cites W1989170879 @default.
- W1987871646 cites W1990735245 @default.
- W1987871646 cites W1990805931 @default.
- W1987871646 cites W1995217152 @default.
- W1987871646 cites W1995313205 @default.
- W1987871646 cites W1995338401 @default.
- W1987871646 cites W1995513455 @default.
- W1987871646 cites W1997367763 @default.
- W1987871646 cites W1998021253 @default.
- W1987871646 cites W1999032058 @default.
- W1987871646 cites W2006541723 @default.
- W1987871646 cites W2006629528 @default.
- W1987871646 cites W2012975647 @default.
- W1987871646 cites W2016405928 @default.
- W1987871646 cites W2022356578 @default.
- W1987871646 cites W2023182326 @default.
- W1987871646 cites W2024019177 @default.
- W1987871646 cites W2025996615 @default.
- W1987871646 cites W2032256389 @default.
- W1987871646 cites W2040167847 @default.
- W1987871646 cites W2044542193 @default.
- W1987871646 cites W2044933617 @default.
- W1987871646 cites W2050092976 @default.
- W1987871646 cites W2050606528 @default.
- W1987871646 cites W2052486954 @default.
- W1987871646 cites W2054745122 @default.
- W1987871646 cites W2055524364 @default.
- W1987871646 cites W2057058849 @default.
- W1987871646 cites W2059342029 @default.
- W1987871646 cites W2063976331 @default.
- W1987871646 cites W2066638392 @default.
- W1987871646 cites W2067232567 @default.
- W1987871646 cites W2076292770 @default.
- W1987871646 cites W2077752627 @default.
- W1987871646 cites W2078007267 @default.
- W1987871646 cites W2079860304 @default.
- W1987871646 cites W2084668693 @default.
- W1987871646 cites W2085263373 @default.
- W1987871646 cites W2086610868 @default.
- W1987871646 cites W2089021822 @default.
- W1987871646 cites W2089442055 @default.
- W1987871646 cites W2091472088 @default.
- W1987871646 cites W2093471709 @default.
- W1987871646 cites W2098917082 @default.
- W1987871646 cites W2102464939 @default.
- W1987871646 cites W2103565138 @default.
- W1987871646 cites W2104521442 @default.
- W1987871646 cites W2104853465 @default.
- W1987871646 cites W2116108818 @default.
- W1987871646 cites W2123597888 @default.
- W1987871646 cites W2131256905 @default.
- W1987871646 cites W2132564506 @default.
- W1987871646 cites W2140973976 @default.
- W1987871646 cites W2141993941 @default.
- W1987871646 cites W2143177142 @default.
- W1987871646 cites W2147829712 @default.
- W1987871646 cites W2148994792 @default.
- W1987871646 cites W2149303790 @default.
- W1987871646 cites W2150933476 @default.
- W1987871646 cites W2155802808 @default.
- W1987871646 cites W2160511150 @default.
- W1987871646 cites W2166487909 @default.
- W1987871646 cites W2171056624 @default.
- W1987871646 cites W2172033635 @default.
- W1987871646 cites W2179614604 @default.
- W1987871646 cites W2180326370 @default.
- W1987871646 cites W2565472021 @default.
- W1987871646 cites W2591655608 @default.
- W1987871646 cites W2592633141 @default.
- W1987871646 cites W2764789329 @default.
- W1987871646 cites W3102065489 @default.
- W1987871646 cites W3103591927 @default.
- W1987871646 cites W4239477731 @default.
- W1987871646 cites W4241741064 @default.
- W1987871646 doi "https://doi.org/10.1103/physrevd.75.124018" @default.
- W1987871646 hasPublicationYear "2007" @default.
- W1987871646 type Work @default.
- W1987871646 sameAs 1987871646 @default.
- W1987871646 citedByCount "350" @default.