Matches in SemOpenAlex for { <https://semopenalex.org/work/W1987992448> ?p ?o ?g. }
- W1987992448 endingPage "833" @default.
- W1987992448 startingPage "829" @default.
- W1987992448 abstract "Purpose Hypofractionated irradiation is often used in precise radiotherapy instead of conventional multifractionated irradiation. We propose a novel mathematical method for selecting a hypofractionated or multifractionated irradiation regimen based on physical dose distribution adding to biologic consideration. Methods and Materials The linear–quadratic model was used for the radiation effects on tumor and normal tissues, especially organs at risk (OARs). On the basis of the assumption that the OAR receives a fraction of the dose intended for the tumor, the minimization problem for the damage effect on the OAR was treated under the constraint that the radiation effect on the tumor is fixed. Results For an N-time fractionated irradiation regimen, the constraint of tumor lethality was described by an N-dimensional hypersphere. The total dose of the fractionated irradiations was considered for minimizing the damage effect on the OAR under the hypersphere condition. It was found that the advantage of hypofractionated or multifractionated irradiation therapies depends on the magnitude of the ratio of α/β parameters for the OAR and tumor in the linear–quadratic model and the ratio of the dose for the OAR and tumor. Conclusions Our mathematical method shows that multifractionated irradiation with a constant dose is better if the ratio of α/β for the OAR and tumor is less than the ratio of the dose for the OAR and tumor, whereas hypofractionated irradiation is better otherwise. Hypofractionated irradiation is often used in precise radiotherapy instead of conventional multifractionated irradiation. We propose a novel mathematical method for selecting a hypofractionated or multifractionated irradiation regimen based on physical dose distribution adding to biologic consideration. The linear–quadratic model was used for the radiation effects on tumor and normal tissues, especially organs at risk (OARs). On the basis of the assumption that the OAR receives a fraction of the dose intended for the tumor, the minimization problem for the damage effect on the OAR was treated under the constraint that the radiation effect on the tumor is fixed. For an N-time fractionated irradiation regimen, the constraint of tumor lethality was described by an N-dimensional hypersphere. The total dose of the fractionated irradiations was considered for minimizing the damage effect on the OAR under the hypersphere condition. It was found that the advantage of hypofractionated or multifractionated irradiation therapies depends on the magnitude of the ratio of α/β parameters for the OAR and tumor in the linear–quadratic model and the ratio of the dose for the OAR and tumor. Our mathematical method shows that multifractionated irradiation with a constant dose is better if the ratio of α/β for the OAR and tumor is less than the ratio of the dose for the OAR and tumor, whereas hypofractionated irradiation is better otherwise." @default.
- W1987992448 created "2016-06-24" @default.
- W1987992448 creator A5020774876 @default.
- W1987992448 creator A5033310100 @default.
- W1987992448 creator A5044632422 @default.
- W1987992448 creator A5049433559 @default.
- W1987992448 creator A5051623223 @default.
- W1987992448 creator A5065724424 @default.
- W1987992448 creator A5088707584 @default.
- W1987992448 date "2012-11-01" @default.
- W1987992448 modified "2023-10-18" @default.
- W1987992448 title "A Mathematical Study to Select Fractionation Regimen Based on Physical Dose Distribution and the Linear–Quadratic Model" @default.
- W1987992448 cites W1963781523 @default.
- W1987992448 cites W1971747664 @default.
- W1987992448 cites W1974492960 @default.
- W1987992448 cites W1977337021 @default.
- W1987992448 cites W1978110160 @default.
- W1987992448 cites W1980020949 @default.
- W1987992448 cites W1983706328 @default.
- W1987992448 cites W2005911101 @default.
- W1987992448 cites W2011204537 @default.
- W1987992448 cites W2015181253 @default.
- W1987992448 cites W2015981950 @default.
- W1987992448 cites W2021642794 @default.
- W1987992448 cites W2026514934 @default.
- W1987992448 cites W2040302464 @default.
- W1987992448 cites W2051202148 @default.
- W1987992448 cites W2054385160 @default.
- W1987992448 cites W2085285983 @default.
- W1987992448 cites W2089253822 @default.
- W1987992448 cites W2099624904 @default.
- W1987992448 cites W2103608035 @default.
- W1987992448 cites W2152729363 @default.
- W1987992448 cites W21553284 @default.
- W1987992448 cites W2155647244 @default.
- W1987992448 cites W2159598747 @default.
- W1987992448 cites W2159746573 @default.
- W1987992448 cites W2160966530 @default.
- W1987992448 cites W2171524637 @default.
- W1987992448 doi "https://doi.org/10.1016/j.ijrobp.2012.01.004" @default.
- W1987992448 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22417807" @default.
- W1987992448 hasPublicationYear "2012" @default.
- W1987992448 type Work @default.
- W1987992448 sameAs 1987992448 @default.
- W1987992448 citedByCount "64" @default.
- W1987992448 countsByYear W19879924482012 @default.
- W1987992448 countsByYear W19879924482013 @default.
- W1987992448 countsByYear W19879924482014 @default.
- W1987992448 countsByYear W19879924482015 @default.
- W1987992448 countsByYear W19879924482016 @default.
- W1987992448 countsByYear W19879924482017 @default.
- W1987992448 countsByYear W19879924482018 @default.
- W1987992448 countsByYear W19879924482019 @default.
- W1987992448 countsByYear W19879924482020 @default.
- W1987992448 countsByYear W19879924482021 @default.
- W1987992448 countsByYear W19879924482022 @default.
- W1987992448 countsByYear W19879924482023 @default.
- W1987992448 crossrefType "journal-article" @default.
- W1987992448 hasAuthorship W1987992448A5020774876 @default.
- W1987992448 hasAuthorship W1987992448A5033310100 @default.
- W1987992448 hasAuthorship W1987992448A5044632422 @default.
- W1987992448 hasAuthorship W1987992448A5049433559 @default.
- W1987992448 hasAuthorship W1987992448A5051623223 @default.
- W1987992448 hasAuthorship W1987992448A5065724424 @default.
- W1987992448 hasAuthorship W1987992448A5088707584 @default.
- W1987992448 hasBestOaLocation W19879924482 @default.
- W1987992448 hasConcept C111337013 @default.
- W1987992448 hasConcept C11928243 @default.
- W1987992448 hasConcept C121332964 @default.
- W1987992448 hasConcept C126838900 @default.
- W1987992448 hasConcept C141071460 @default.
- W1987992448 hasConcept C154945302 @default.
- W1987992448 hasConcept C178790620 @default.
- W1987992448 hasConcept C185544564 @default.
- W1987992448 hasConcept C185592680 @default.
- W1987992448 hasConcept C2524010 @default.
- W1987992448 hasConcept C2776036281 @default.
- W1987992448 hasConcept C2776562905 @default.
- W1987992448 hasConcept C2781413609 @default.
- W1987992448 hasConcept C2989005 @default.
- W1987992448 hasConcept C33923547 @default.
- W1987992448 hasConcept C41008148 @default.
- W1987992448 hasConcept C509974204 @default.
- W1987992448 hasConcept C71924100 @default.
- W1987992448 hasConcept C97428945 @default.
- W1987992448 hasConceptScore W1987992448C111337013 @default.
- W1987992448 hasConceptScore W1987992448C11928243 @default.
- W1987992448 hasConceptScore W1987992448C121332964 @default.
- W1987992448 hasConceptScore W1987992448C126838900 @default.
- W1987992448 hasConceptScore W1987992448C141071460 @default.
- W1987992448 hasConceptScore W1987992448C154945302 @default.
- W1987992448 hasConceptScore W1987992448C178790620 @default.
- W1987992448 hasConceptScore W1987992448C185544564 @default.
- W1987992448 hasConceptScore W1987992448C185592680 @default.
- W1987992448 hasConceptScore W1987992448C2524010 @default.
- W1987992448 hasConceptScore W1987992448C2776036281 @default.
- W1987992448 hasConceptScore W1987992448C2776562905 @default.
- W1987992448 hasConceptScore W1987992448C2781413609 @default.