Matches in SemOpenAlex for { <https://semopenalex.org/work/W1988328462> ?p ?o ?g. }
- W1988328462 endingPage "155" @default.
- W1988328462 startingPage "140" @default.
- W1988328462 abstract "The concurrent upward two-phase flow of air and water in a long vertical large diameter pipe with an inner diameter (D) of 200 mm and a height (z) of 26 m (z/D = 130) was investigated experimentally at low superficial liquid velocities from 0.05009 to 0.3121 m/s and the superficial gas velocities from 0.01779 to 0.5069 m/s. The resultant void fractions range from 0.03579 to 0.4059. According to the observations using a high speed video camera, the flow regimes of bubbly, developing cap bubbly and fully-developed cap bubbly flows prevailed in the flows. The developing cap bubbly flow appeared as a flow regime transition from bubbly to fully-developed cap bubble flow in the vertical large diameter pipe. The developing cap bubbly flow changes gradually and lasts for a long time period and a wide axial region in the flow direction, in contrast to a sudden transition from bubbly to slug flows in a small diameter pipe. The analysis in this study showed that the flow regime transition depends not only on the void fraction but also on the axial distance in the flow and the pipe diameter. The axial flow development brings about the transition to happen in a lower void fraction flow and the increase of pipe diameter causes the transition to happen in a higher void fraction flow. The measured void fraction showed an N-shaped axial changing manner that the void fraction increases monotonously with axial position in the bubbly flow, decreases non-monotonously with axial position in the developing cap bubbly flow, and increases monotonously again with axial position in the fully-developed cap bubbly flow. The temporary void fraction decrease phenomenon in the transition region from bubbly to cap bubbly flow can be attributed to the formation of medium to large cap bubbles and their gradual growth into the maximum size of cap bubble and/or cluster of large cap bubbles in the developing cap bubbly flow. In order to predict the N-shaped axial void fraction changing behaviors in the flow regime transition from bubbly to cap bubbly flow, the existing 12 drift flux correlation sets for large diameter pipes are reviewed and their predictabilities are studied against the present experimental data. Although some drift flux correlation sets, such as those of Clark and Flemmer (1986) and Hibiki and Ishii (2003), can predict the present experimental data with reasonable average relative deviations, no drift flux correlation set for distribution parameter and drift velocity can give a reliable prediction for the observed N-shaped axial void fraction changing behaviors in the region from bubbly to cap bubbly flow in a vertical large diameter pipe." @default.
- W1988328462 created "2016-06-24" @default.
- W1988328462 creator A5050917634 @default.
- W1988328462 creator A5055615806 @default.
- W1988328462 creator A5057017873 @default.
- W1988328462 date "2015-04-01" @default.
- W1988328462 modified "2023-10-06" @default.
- W1988328462 title "Bubbly-to-cap bubbly flow transition in a long-26m vertical large diameter pipe at low liquid flow rate" @default.
- W1988328462 cites W1514528312 @default.
- W1988328462 cites W1981138000 @default.
- W1988328462 cites W1987254359 @default.
- W1988328462 cites W1992572917 @default.
- W1988328462 cites W1994950399 @default.
- W1988328462 cites W1995725846 @default.
- W1988328462 cites W1999023066 @default.
- W1988328462 cites W2009319608 @default.
- W1988328462 cites W2010353565 @default.
- W1988328462 cites W2014960387 @default.
- W1988328462 cites W2019758240 @default.
- W1988328462 cites W2032027453 @default.
- W1988328462 cites W2033196167 @default.
- W1988328462 cites W2037237309 @default.
- W1988328462 cites W2037645662 @default.
- W1988328462 cites W2041174628 @default.
- W1988328462 cites W2044762986 @default.
- W1988328462 cites W2045570404 @default.
- W1988328462 cites W2046634363 @default.
- W1988328462 cites W2060534493 @default.
- W1988328462 cites W2069607284 @default.
- W1988328462 cites W2074902498 @default.
- W1988328462 cites W2086745062 @default.
- W1988328462 cites W2100537585 @default.
- W1988328462 cites W2102467371 @default.
- W1988328462 cites W2157399615 @default.
- W1988328462 cites W2601022303 @default.
- W1988328462 cites W3217742770 @default.
- W1988328462 cites W4240546190 @default.
- W1988328462 cites W4252985915 @default.
- W1988328462 cites W63598474 @default.
- W1988328462 cites W88337460 @default.
- W1988328462 doi "https://doi.org/10.1016/j.ijheatfluidflow.2015.01.001" @default.
- W1988328462 hasPublicationYear "2015" @default.
- W1988328462 type Work @default.
- W1988328462 sameAs 1988328462 @default.
- W1988328462 citedByCount "28" @default.
- W1988328462 countsByYear W19883284622015 @default.
- W1988328462 countsByYear W19883284622016 @default.
- W1988328462 countsByYear W19883284622017 @default.
- W1988328462 countsByYear W19883284622018 @default.
- W1988328462 countsByYear W19883284622019 @default.
- W1988328462 countsByYear W19883284622020 @default.
- W1988328462 countsByYear W19883284622021 @default.
- W1988328462 countsByYear W19883284622022 @default.
- W1988328462 countsByYear W19883284622023 @default.
- W1988328462 crossrefType "journal-article" @default.
- W1988328462 hasAuthorship W1988328462A5050917634 @default.
- W1988328462 hasAuthorship W1988328462A5055615806 @default.
- W1988328462 hasAuthorship W1988328462A5057017873 @default.
- W1988328462 hasConcept C121332964 @default.
- W1988328462 hasConcept C139514615 @default.
- W1988328462 hasConcept C144308804 @default.
- W1988328462 hasConcept C157915830 @default.
- W1988328462 hasConcept C159985019 @default.
- W1988328462 hasConcept C172120300 @default.
- W1988328462 hasConcept C180925781 @default.
- W1988328462 hasConcept C192562407 @default.
- W1988328462 hasConcept C196558001 @default.
- W1988328462 hasConcept C204561356 @default.
- W1988328462 hasConcept C23898865 @default.
- W1988328462 hasConcept C2779772531 @default.
- W1988328462 hasConcept C2780212536 @default.
- W1988328462 hasConcept C38349280 @default.
- W1988328462 hasConcept C57879066 @default.
- W1988328462 hasConcept C6648577 @default.
- W1988328462 hasConceptScore W1988328462C121332964 @default.
- W1988328462 hasConceptScore W1988328462C139514615 @default.
- W1988328462 hasConceptScore W1988328462C144308804 @default.
- W1988328462 hasConceptScore W1988328462C157915830 @default.
- W1988328462 hasConceptScore W1988328462C159985019 @default.
- W1988328462 hasConceptScore W1988328462C172120300 @default.
- W1988328462 hasConceptScore W1988328462C180925781 @default.
- W1988328462 hasConceptScore W1988328462C192562407 @default.
- W1988328462 hasConceptScore W1988328462C196558001 @default.
- W1988328462 hasConceptScore W1988328462C204561356 @default.
- W1988328462 hasConceptScore W1988328462C23898865 @default.
- W1988328462 hasConceptScore W1988328462C2779772531 @default.
- W1988328462 hasConceptScore W1988328462C2780212536 @default.
- W1988328462 hasConceptScore W1988328462C38349280 @default.
- W1988328462 hasConceptScore W1988328462C57879066 @default.
- W1988328462 hasConceptScore W1988328462C6648577 @default.
- W1988328462 hasLocation W19883284621 @default.
- W1988328462 hasOpenAccess W1988328462 @default.
- W1988328462 hasPrimaryLocation W19883284621 @default.
- W1988328462 hasRelatedWork W2316632780 @default.
- W1988328462 hasRelatedWork W2339989993 @default.
- W1988328462 hasRelatedWork W2515874357 @default.
- W1988328462 hasRelatedWork W2562504370 @default.
- W1988328462 hasRelatedWork W2805484221 @default.