Matches in SemOpenAlex for { <https://semopenalex.org/work/W1988493049> ?p ?o ?g. }
- W1988493049 endingPage "196" @default.
- W1988493049 startingPage "135" @default.
- W1988493049 abstract "The retention mechanism in reversed-phase liquid chromatography (RPLC) with silica particles modified with surface-grafted alkyl chains cannot be fully understood unless the specific properties of the surface layers, such as the configurational constraints of terminally attached chains, are taken into account. The commonly accepted view that the main factor governing RPLC retention behaviour is constituted by solute—solvent interactions in the bulk mobile phase is supported by useful but simplified theories based on solvation as in bulk liquids. Solvation in bulk liquids depends on the free energy to create “cavities” for solute molecules in mobile and stationary phases. This paper first reviews possibilities and shortcomings of regular solution theories, where the partition coefficient is expressed in terms of the Flory—Huggins (FH) interaction parameters for the solute. Where enthalpic effects dominate, these parameters can be obtained from experimental data or from generalized thermodynamic functions expressed as Hildebrand's solubility parameter, δ, representing the square root of the cohesive energy density. In RPLC with terminally attached chains on the support, entropy effects arising from the molecular organization of chains are also important, and entropic expulsion of solute molecules from the stationary phase is expected to take place. RPLC practice indicates that the nature of the grafted layer [e.g., flexibility of grafted chains and “phase transitions”, geometrical effects, chain length effects, chain branching and surface effects (coverage and hydroxyls)] indeed influences the “adsorptive” and retentive capacity of the bonded stationary layer. Theories specially designed for grafted layers are reviewed starting with (oversimplified) rod-like chain models, followed by several, more recent, lattice theories, which are based on extensions of the Flory—Huggins lattice theory for polymers in solution. These theories, when applied to the RPLC retention mechanism, take into account some aspects of the molecular organization in the grafted layer, but are still subject to simplifying assumptions. A more general approach is based on the self-consistent field theory for adsorption (SCFA) originally developed by Scheutjens and Fleer to describe the polymer adsorption, where in essence the segment density distribution is found resulting from minimization of free energy. Extending the SCFA theory to allow for RPLC conditions provides insight into the effects of the solvent quality (modifier content), collapse of the chain phase, the grafted and the solute's chain lengths and the grafting density (surface coverage) on the segment density profile. Both aliphatic and amphiphilic solute molecules appear to be distributed non-uniformly in the grafted layer and are accumulated in the boundary region near the interface between chain phase and bulk solvent. Using the related theory by Leermakers and Scheutjens [self-consistent anisotropic field (SCAF) theory], shape selectivity is shown for flexible chain, star- and rod-like solutes, chain length effects and alignment are also being found. In the presence of a specific affinity for the silica surface, due to residual hydroxyls, for both polar solvent molecules and solute molecules for polar groupa, both the SCFA and the SCAF theories predict an accumulation of polar segments near the silica surface with is fairly pronounced, displacing most of the (unattached) non-polar segments more towards the chain phase surface." @default.
- W1988493049 created "2016-06-24" @default.
- W1988493049 creator A5028159972 @default.
- W1988493049 creator A5032732528 @default.
- W1988493049 creator A5038079536 @default.
- W1988493049 creator A5048066004 @default.
- W1988493049 creator A5085729058 @default.
- W1988493049 date "1993-12-01" @default.
- W1988493049 modified "2023-10-01" @default.
- W1988493049 title "Lattice models for the description of partitioning/ adsorption and retention in reversed-phase liquid chromatography, including surface and shape effects" @default.
- W1988493049 cites W1479682365 @default.
- W1988493049 cites W1508787315 @default.
- W1988493049 cites W15877456 @default.
- W1988493049 cites W1963922176 @default.
- W1988493049 cites W1964112841 @default.
- W1988493049 cites W1965210656 @default.
- W1988493049 cites W1966865050 @default.
- W1988493049 cites W1967872960 @default.
- W1988493049 cites W1968125164 @default.
- W1988493049 cites W1968294466 @default.
- W1988493049 cites W1969085661 @default.
- W1988493049 cites W1970249801 @default.
- W1988493049 cites W1970440367 @default.
- W1988493049 cites W1971146413 @default.
- W1988493049 cites W1972294101 @default.
- W1988493049 cites W1976564157 @default.
- W1988493049 cites W1976883040 @default.
- W1988493049 cites W1977308947 @default.
- W1988493049 cites W1977388087 @default.
- W1988493049 cites W1977643855 @default.
- W1988493049 cites W1980789543 @default.
- W1988493049 cites W1982211183 @default.
- W1988493049 cites W1983049002 @default.
- W1988493049 cites W1984002239 @default.
- W1988493049 cites W1984240836 @default.
- W1988493049 cites W1984832932 @default.
- W1988493049 cites W1986013160 @default.
- W1988493049 cites W1987829876 @default.
- W1988493049 cites W1988192787 @default.
- W1988493049 cites W1988208077 @default.
- W1988493049 cites W1988560054 @default.
- W1988493049 cites W1990188535 @default.
- W1988493049 cites W1991558823 @default.
- W1988493049 cites W1996057914 @default.
- W1988493049 cites W1996457760 @default.
- W1988493049 cites W1997031390 @default.
- W1988493049 cites W1997507432 @default.
- W1988493049 cites W1999083226 @default.
- W1988493049 cites W1999242370 @default.
- W1988493049 cites W1999716694 @default.
- W1988493049 cites W1999865376 @default.
- W1988493049 cites W2000750191 @default.
- W1988493049 cites W2003223478 @default.
- W1988493049 cites W2006391298 @default.
- W1988493049 cites W2007140421 @default.
- W1988493049 cites W2007535160 @default.
- W1988493049 cites W2009171075 @default.
- W1988493049 cites W2010945250 @default.
- W1988493049 cites W2012491181 @default.
- W1988493049 cites W2014545623 @default.
- W1988493049 cites W2015111118 @default.
- W1988493049 cites W2016306469 @default.
- W1988493049 cites W2020298029 @default.
- W1988493049 cites W2021767200 @default.
- W1988493049 cites W2022942253 @default.
- W1988493049 cites W2023235702 @default.
- W1988493049 cites W2024775577 @default.
- W1988493049 cites W2024910208 @default.
- W1988493049 cites W2026448964 @default.
- W1988493049 cites W2026653020 @default.
- W1988493049 cites W2027836069 @default.
- W1988493049 cites W2028663179 @default.
- W1988493049 cites W2028899207 @default.
- W1988493049 cites W2029469281 @default.
- W1988493049 cites W2029672236 @default.
- W1988493049 cites W2030841140 @default.
- W1988493049 cites W2032057129 @default.
- W1988493049 cites W2034334269 @default.
- W1988493049 cites W2034715370 @default.
- W1988493049 cites W2036227128 @default.
- W1988493049 cites W2038055613 @default.
- W1988493049 cites W2038122082 @default.
- W1988493049 cites W2038401292 @default.
- W1988493049 cites W2038795762 @default.
- W1988493049 cites W2038934920 @default.
- W1988493049 cites W2039624239 @default.
- W1988493049 cites W2041248413 @default.
- W1988493049 cites W2041365498 @default.
- W1988493049 cites W2041705219 @default.
- W1988493049 cites W2043467852 @default.
- W1988493049 cites W2043650752 @default.
- W1988493049 cites W2044346644 @default.
- W1988493049 cites W2045057448 @default.
- W1988493049 cites W2045912482 @default.
- W1988493049 cites W2046654815 @default.
- W1988493049 cites W2048151646 @default.
- W1988493049 cites W2051749417 @default.
- W1988493049 cites W2053435152 @default.