Matches in SemOpenAlex for { <https://semopenalex.org/work/W1988603642> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W1988603642 abstract "The theory of fundamental boundary eigensolutions for elastostatic problems, developed in Part I, is applied to formulate methods for computational mechanics. This theory shows that every elastic solution can be written as a linear combination of some fundamental boundary orthogonal deformations, thus providing a generalized Fourier expansion. One finds that traditional boundary element and finite element methods are largely consistent with this theory, but do not harness its full power. This theory shows that these computational methods are indirectly a generalized discrete Fourier analysis. Furthermore, by utilizing suitable boundary weight functions, boundary element and finite element formulations may be written exclusively in terms of bounded quantities, even for non-smooth problems involving notches, cracks, mixed boundary conditions and bi-material interfaces. The close relationship between the resulting boundary element and finite element methods also becomes evident. Both use displacement and surface traction as primary variables. A new degree-of-freedom concept is introduced, along with a stiffness tensor that enables one to visualize a finite element method via a boundary discretization process, just as in a boundary element approach. Global convergence characteristics of the traction-oriented finite element method are also developed. Comparisons with closed-form fundamental boundary eigensolutions for a circular elastic disc are presented in order to provide a means for assessing the numerical methods. Several other numerical examples are solved efficiently by using the concept of boundary eigensolutions in an indirect fashion. The results indicate that the algorithms follow the underlying theory and that solutions to non-smooth problems can be obtained in a systematic manner. Beyond this, the concept of boundary eigensolutions provides an alternative view of computational continuum mechanics that may lead to the development of other non-traditional approaches." @default.
- W1988603642 created "2016-06-24" @default.
- W1988603642 creator A5033833042 @default.
- W1988603642 creator A5057265513 @default.
- W1988603642 date "2003-02-01" @default.
- W1988603642 modified "2023-10-14" @default.
- W1988603642 title "Boundary eigensolutions in elasticity II. Application to computational mechanics" @default.
- W1988603642 cites W118300729 @default.
- W1988603642 cites W1538727679 @default.
- W1988603642 cites W1965149928 @default.
- W1988603642 cites W1974543456 @default.
- W1988603642 cites W1979174147 @default.
- W1988603642 cites W1992206315 @default.
- W1988603642 cites W1993812914 @default.
- W1988603642 cites W2005098242 @default.
- W1988603642 cites W2011907665 @default.
- W1988603642 cites W2052595377 @default.
- W1988603642 cites W2054224247 @default.
- W1988603642 cites W2067280812 @default.
- W1988603642 cites W2084568658 @default.
- W1988603642 cites W2137506229 @default.
- W1988603642 cites W2138070515 @default.
- W1988603642 cites W2145572133 @default.
- W1988603642 cites W2594093994 @default.
- W1988603642 cites W59622750 @default.
- W1988603642 doi "https://doi.org/10.1016/s0020-7683(02)00586-3" @default.
- W1988603642 hasPublicationYear "2003" @default.
- W1988603642 type Work @default.
- W1988603642 sameAs 1988603642 @default.
- W1988603642 citedByCount "6" @default.
- W1988603642 countsByYear W19886036422012 @default.
- W1988603642 countsByYear W19886036422017 @default.
- W1988603642 countsByYear W19886036422020 @default.
- W1988603642 crossrefType "journal-article" @default.
- W1988603642 hasAuthorship W1988603642A5033833042 @default.
- W1988603642 hasAuthorship W1988603642A5057265513 @default.
- W1988603642 hasConcept C114793014 @default.
- W1988603642 hasConcept C127313418 @default.
- W1988603642 hasConcept C127413603 @default.
- W1988603642 hasConcept C134306372 @default.
- W1988603642 hasConcept C135628077 @default.
- W1988603642 hasConcept C144468803 @default.
- W1988603642 hasConcept C182310444 @default.
- W1988603642 hasConcept C24810621 @default.
- W1988603642 hasConcept C33923547 @default.
- W1988603642 hasConcept C38834483 @default.
- W1988603642 hasConcept C42045870 @default.
- W1988603642 hasConcept C48395688 @default.
- W1988603642 hasConcept C52890695 @default.
- W1988603642 hasConcept C62354387 @default.
- W1988603642 hasConcept C63632240 @default.
- W1988603642 hasConcept C66938386 @default.
- W1988603642 hasConcept C82047721 @default.
- W1988603642 hasConceptScore W1988603642C114793014 @default.
- W1988603642 hasConceptScore W1988603642C127313418 @default.
- W1988603642 hasConceptScore W1988603642C127413603 @default.
- W1988603642 hasConceptScore W1988603642C134306372 @default.
- W1988603642 hasConceptScore W1988603642C135628077 @default.
- W1988603642 hasConceptScore W1988603642C144468803 @default.
- W1988603642 hasConceptScore W1988603642C182310444 @default.
- W1988603642 hasConceptScore W1988603642C24810621 @default.
- W1988603642 hasConceptScore W1988603642C33923547 @default.
- W1988603642 hasConceptScore W1988603642C38834483 @default.
- W1988603642 hasConceptScore W1988603642C42045870 @default.
- W1988603642 hasConceptScore W1988603642C48395688 @default.
- W1988603642 hasConceptScore W1988603642C52890695 @default.
- W1988603642 hasConceptScore W1988603642C62354387 @default.
- W1988603642 hasConceptScore W1988603642C63632240 @default.
- W1988603642 hasConceptScore W1988603642C66938386 @default.
- W1988603642 hasConceptScore W1988603642C82047721 @default.
- W1988603642 hasLocation W19886036421 @default.
- W1988603642 hasOpenAccess W1988603642 @default.
- W1988603642 hasPrimaryLocation W19886036421 @default.
- W1988603642 hasRelatedWork W1992644747 @default.
- W1988603642 hasRelatedWork W2012449959 @default.
- W1988603642 hasRelatedWork W2050770628 @default.
- W1988603642 hasRelatedWork W2052109794 @default.
- W1988603642 hasRelatedWork W2121106507 @default.
- W1988603642 hasRelatedWork W2157939293 @default.
- W1988603642 hasRelatedWork W2401850100 @default.
- W1988603642 hasRelatedWork W2999232206 @default.
- W1988603642 hasRelatedWork W3088743119 @default.
- W1988603642 hasRelatedWork W3161443230 @default.
- W1988603642 isParatext "false" @default.
- W1988603642 isRetracted "false" @default.
- W1988603642 magId "1988603642" @default.
- W1988603642 workType "article" @default.