Matches in SemOpenAlex for { <https://semopenalex.org/work/W1988627596> ?p ?o ?g. }
- W1988627596 endingPage "724" @default.
- W1988627596 startingPage "715" @default.
- W1988627596 abstract "Objectives: To experimentally investigate the acoustical behavior of silica nanoparticles within conventional diagnostic ultrasound fields and to determine a suitable configuration, in terms of particle size and concentration, for their employment as targetable contrast agents. We also assessed the effectiveness of a novel method for automatic detection of targeted silica nanoparticles for future tissue typing applications. Materials and Methods: Silica nanospheres of variable size (160, 330, and 660 nm in diameter) and concentration (1010–1013 part/mL) were dispersed in different custom-designed agarose-based gel samples and imaged at 7.5 MHz with a conventional echograph linked to a research platform for radiofrequency signal acquisition. Off-line analysis included evaluation of backscattered ultrasound amplitude, image brightness, and nanoparticle automatic detection through radiofrequency signal processing. Results: Amplitude of nanoparticle-backscattered signals linearly increased with particle number concentration, but image brightness did not show the same trend, because the logarithmic compression caused the reaching of a “plateau” where brightness remained almost constant for further increments in particle concentration. On the other hand, both backscatter amplitude and image brightness showed significant increments when particle diameter was increased. Taking into account particle size constraints for tumor targeting (pore size of tumor endothelium and trapping effects because of reticulo-endothelial system limit the dimension of effectively employable particles to less than 380 nm), a suitable compromise is represented by the employment of 330-nm silica nanospheres at a concentration of about 1 to 2 × 1011 part/mL. These particles, in fact, showed the best combination of number concentration and diameter value to obtain an effective enhancement on conventional echographic images. Furthermore, also the sensitivity of the developed method for automatic nanoparticle detection had a maximum (72.8%) with 330-nm particles, whereas it was lower with both bigger and smaller particles (being equal to 64.1% and 17.5%, respectively). Conclusions: Silica nanoparticles at a diameter of about 330 nm are very promising contrast agents for ultrasound imaging and specific tumor targeting at conventional diagnostic frequencies, being in particular automatically detectable with high sensitivity already at low doses. Future studies will be carried out to assess the acoustic behavior of nanoparticles with different geometries/sizes and to improve sensitivity of the automatic detection algorithm." @default.
- W1988627596 created "2016-06-24" @default.
- W1988627596 creator A5006032592 @default.
- W1988627596 creator A5010879115 @default.
- W1988627596 creator A5011410230 @default.
- W1988627596 creator A5012179244 @default.
- W1988627596 creator A5036753801 @default.
- W1988627596 creator A5056288289 @default.
- W1988627596 creator A5059983128 @default.
- W1988627596 creator A5065118983 @default.
- W1988627596 date "2010-11-01" @default.
- W1988627596 modified "2023-09-27" @default.
- W1988627596 title "Optimal Enhancement Configuration of Silica Nanoparticles for Ultrasound Imaging and Automatic Detection at Conventional Diagnostic Frequencies" @default.
- W1988627596 cites W1966187546 @default.
- W1988627596 cites W1982574363 @default.
- W1988627596 cites W1985858988 @default.
- W1988627596 cites W1991951464 @default.
- W1988627596 cites W2002516695 @default.
- W1988627596 cites W2005098736 @default.
- W1988627596 cites W2011676899 @default.
- W1988627596 cites W2034242244 @default.
- W1988627596 cites W2044887507 @default.
- W1988627596 cites W2046187833 @default.
- W1988627596 cites W2046891245 @default.
- W1988627596 cites W2056978535 @default.
- W1988627596 cites W2061581204 @default.
- W1988627596 cites W2063578372 @default.
- W1988627596 cites W207673420 @default.
- W1988627596 cites W2081245603 @default.
- W1988627596 cites W2086773063 @default.
- W1988627596 cites W2087852687 @default.
- W1988627596 cites W2089124524 @default.
- W1988627596 cites W2089777050 @default.
- W1988627596 cites W2092346053 @default.
- W1988627596 cites W2092373300 @default.
- W1988627596 cites W2103858720 @default.
- W1988627596 cites W2142915213 @default.
- W1988627596 cites W2147585883 @default.
- W1988627596 cites W2170632276 @default.
- W1988627596 doi "https://doi.org/10.1097/rli.0b013e3181e6f42f" @default.
- W1988627596 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20562708" @default.
- W1988627596 hasPublicationYear "2010" @default.
- W1988627596 type Work @default.
- W1988627596 sameAs 1988627596 @default.
- W1988627596 citedByCount "82" @default.
- W1988627596 countsByYear W19886275962012 @default.
- W1988627596 countsByYear W19886275962013 @default.
- W1988627596 countsByYear W19886275962014 @default.
- W1988627596 countsByYear W19886275962015 @default.
- W1988627596 countsByYear W19886275962016 @default.
- W1988627596 countsByYear W19886275962017 @default.
- W1988627596 countsByYear W19886275962018 @default.
- W1988627596 countsByYear W19886275962019 @default.
- W1988627596 countsByYear W19886275962020 @default.
- W1988627596 countsByYear W19886275962021 @default.
- W1988627596 countsByYear W19886275962022 @default.
- W1988627596 countsByYear W19886275962023 @default.
- W1988627596 crossrefType "journal-article" @default.
- W1988627596 hasAuthorship W1988627596A5006032592 @default.
- W1988627596 hasAuthorship W1988627596A5010879115 @default.
- W1988627596 hasAuthorship W1988627596A5011410230 @default.
- W1988627596 hasAuthorship W1988627596A5012179244 @default.
- W1988627596 hasAuthorship W1988627596A5036753801 @default.
- W1988627596 hasAuthorship W1988627596A5056288289 @default.
- W1988627596 hasAuthorship W1988627596A5059983128 @default.
- W1988627596 hasAuthorship W1988627596A5065118983 @default.
- W1988627596 hasConcept C111368507 @default.
- W1988627596 hasConcept C120665830 @default.
- W1988627596 hasConcept C121332964 @default.
- W1988627596 hasConcept C125245961 @default.
- W1988627596 hasConcept C127313418 @default.
- W1988627596 hasConcept C136229726 @default.
- W1988627596 hasConcept C143753070 @default.
- W1988627596 hasConcept C147789679 @default.
- W1988627596 hasConcept C155672457 @default.
- W1988627596 hasConcept C171250308 @default.
- W1988627596 hasConcept C180205008 @default.
- W1988627596 hasConcept C185592680 @default.
- W1988627596 hasConcept C187530423 @default.
- W1988627596 hasConcept C192562407 @default.
- W1988627596 hasConcept C199360897 @default.
- W1988627596 hasConcept C24890656 @default.
- W1988627596 hasConcept C2778517922 @default.
- W1988627596 hasConcept C2779843651 @default.
- W1988627596 hasConcept C30354325 @default.
- W1988627596 hasConcept C41008148 @default.
- W1988627596 hasConcept C555944384 @default.
- W1988627596 hasConcept C71924100 @default.
- W1988627596 hasConcept C76155785 @default.
- W1988627596 hasConceptScore W1988627596C111368507 @default.
- W1988627596 hasConceptScore W1988627596C120665830 @default.
- W1988627596 hasConceptScore W1988627596C121332964 @default.
- W1988627596 hasConceptScore W1988627596C125245961 @default.
- W1988627596 hasConceptScore W1988627596C127313418 @default.
- W1988627596 hasConceptScore W1988627596C136229726 @default.
- W1988627596 hasConceptScore W1988627596C143753070 @default.
- W1988627596 hasConceptScore W1988627596C147789679 @default.
- W1988627596 hasConceptScore W1988627596C155672457 @default.