Matches in SemOpenAlex for { <https://semopenalex.org/work/W1988707322> ?p ?o ?g. }
- W1988707322 endingPage "1138" @default.
- W1988707322 startingPage "1125" @default.
- W1988707322 abstract "Ramp-up is a significant bottleneck for the introduction of new or adapted manufacturing systems. The effort and time required to ramp-up a system is largely dependent on the effectiveness of the human decision making process to select the most promising sequence of actions to improve the system to the required level of performance. Although existing work has identified significant factors influencing the effectiveness of ramp-up, little has been done to support the decision making during the process. This paper approaches ramp-up as a sequential adjustment and tuning process that aims to get a manufacturing system to a desirable performance in the fastest possible time. Production stations and machines are the key resources in a manufacturing system. They are often functionally decoupled and can be treated in the first instance as independent ramp-up problems. Hence, this paper focuses on developing a Markov decision process (MDP) model to formalize ramp-up of production stations and enable their formal analysis. The aim is to capture the cause-and-effect relationships between an operator's adaptation or adjustment of a station and the station's response to improve the effectiveness of the process. Reinforcement learning has been identified as a promising approach to learn from ramp-up experience and discover more successful decision-making policies. Batch learning in particular can perform well with little data. This paper investigates the application of a Q-batch learning algorithm combined with an MDP model of the ramp-up process. The approach has been applied to a highly automated production station where several ramp-up processes are carried out. The convergence of the Q-learning algorithm has been analyzed along with the variation of its parameters. Finally, the learned policy has been applied and compared against previous ramp-up cases." @default.
- W1988707322 created "2016-06-24" @default.
- W1988707322 creator A5001308079 @default.
- W1988707322 creator A5071918825 @default.
- W1988707322 creator A5085854894 @default.
- W1988707322 date "2014-09-01" @default.
- W1988707322 modified "2023-10-03" @default.
- W1988707322 title "An MDP Model-Based Reinforcement Learning Approach for Production Station Ramp-Up Optimization: Q-Learning Analysis" @default.
- W1988707322 cites W157115167 @default.
- W1988707322 cites W1964057582 @default.
- W1988707322 cites W1965436038 @default.
- W1988707322 cites W1977357978 @default.
- W1988707322 cites W1981119758 @default.
- W1988707322 cites W1982262386 @default.
- W1988707322 cites W1992924837 @default.
- W1988707322 cites W2001381886 @default.
- W1988707322 cites W2016418141 @default.
- W1988707322 cites W2016672509 @default.
- W1988707322 cites W2017224990 @default.
- W1988707322 cites W2031765862 @default.
- W1988707322 cites W2035115911 @default.
- W1988707322 cites W2046602365 @default.
- W1988707322 cites W2049642248 @default.
- W1988707322 cites W2071909685 @default.
- W1988707322 cites W2072923839 @default.
- W1988707322 cites W2073879790 @default.
- W1988707322 cites W2085172264 @default.
- W1988707322 cites W2099229786 @default.
- W1988707322 cites W2101786389 @default.
- W1988707322 cites W2124655655 @default.
- W1988707322 cites W2128977254 @default.
- W1988707322 cites W2135655146 @default.
- W1988707322 cites W2143515036 @default.
- W1988707322 cites W2150984526 @default.
- W1988707322 cites W2159544029 @default.
- W1988707322 cites W2295804113 @default.
- W1988707322 cites W86884760 @default.
- W1988707322 doi "https://doi.org/10.1109/tsmc.2013.2294155" @default.
- W1988707322 hasPublicationYear "2014" @default.
- W1988707322 type Work @default.
- W1988707322 sameAs 1988707322 @default.
- W1988707322 citedByCount "41" @default.
- W1988707322 countsByYear W19887073222015 @default.
- W1988707322 countsByYear W19887073222016 @default.
- W1988707322 countsByYear W19887073222017 @default.
- W1988707322 countsByYear W19887073222018 @default.
- W1988707322 countsByYear W19887073222019 @default.
- W1988707322 countsByYear W19887073222020 @default.
- W1988707322 countsByYear W19887073222021 @default.
- W1988707322 countsByYear W19887073222022 @default.
- W1988707322 countsByYear W19887073222023 @default.
- W1988707322 crossrefType "journal-article" @default.
- W1988707322 hasAuthorship W1988707322A5001308079 @default.
- W1988707322 hasAuthorship W1988707322A5071918825 @default.
- W1988707322 hasAuthorship W1988707322A5085854894 @default.
- W1988707322 hasBestOaLocation W19887073221 @default.
- W1988707322 hasConcept C105795698 @default.
- W1988707322 hasConcept C106189395 @default.
- W1988707322 hasConcept C111919701 @default.
- W1988707322 hasConcept C119857082 @default.
- W1988707322 hasConcept C120665830 @default.
- W1988707322 hasConcept C121332964 @default.
- W1988707322 hasConcept C127413603 @default.
- W1988707322 hasConcept C13736549 @default.
- W1988707322 hasConcept C139719470 @default.
- W1988707322 hasConcept C139807058 @default.
- W1988707322 hasConcept C149635348 @default.
- W1988707322 hasConcept C154945302 @default.
- W1988707322 hasConcept C159886148 @default.
- W1988707322 hasConcept C162324750 @default.
- W1988707322 hasConcept C21547014 @default.
- W1988707322 hasConcept C26517878 @default.
- W1988707322 hasConcept C2776043813 @default.
- W1988707322 hasConcept C2778348673 @default.
- W1988707322 hasConcept C2780513914 @default.
- W1988707322 hasConcept C33923547 @default.
- W1988707322 hasConcept C38652104 @default.
- W1988707322 hasConcept C41008148 @default.
- W1988707322 hasConcept C97541855 @default.
- W1988707322 hasConcept C98045186 @default.
- W1988707322 hasConceptScore W1988707322C105795698 @default.
- W1988707322 hasConceptScore W1988707322C106189395 @default.
- W1988707322 hasConceptScore W1988707322C111919701 @default.
- W1988707322 hasConceptScore W1988707322C119857082 @default.
- W1988707322 hasConceptScore W1988707322C120665830 @default.
- W1988707322 hasConceptScore W1988707322C121332964 @default.
- W1988707322 hasConceptScore W1988707322C127413603 @default.
- W1988707322 hasConceptScore W1988707322C13736549 @default.
- W1988707322 hasConceptScore W1988707322C139719470 @default.
- W1988707322 hasConceptScore W1988707322C139807058 @default.
- W1988707322 hasConceptScore W1988707322C149635348 @default.
- W1988707322 hasConceptScore W1988707322C154945302 @default.
- W1988707322 hasConceptScore W1988707322C159886148 @default.
- W1988707322 hasConceptScore W1988707322C162324750 @default.
- W1988707322 hasConceptScore W1988707322C21547014 @default.
- W1988707322 hasConceptScore W1988707322C26517878 @default.
- W1988707322 hasConceptScore W1988707322C2776043813 @default.
- W1988707322 hasConceptScore W1988707322C2778348673 @default.