Matches in SemOpenAlex for { <https://semopenalex.org/work/W1988760901> ?p ?o ?g. }
- W1988760901 endingPage "27411" @default.
- W1988760901 startingPage "27401" @default.
- W1988760901 abstract "The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus is a multifunctional protein with important roles in both transcriptional regulation and episomal maintenance. LANA is also a DNA-binding protein and has been shown to specifically bind to a region within the terminal repeat. Here, we have performed a detailed analysis of the DNA-binding activity of LANA and show that it binds two sites separated by 22 bp. We used electrophoretic mobility shift assay to quantitatively analyze the binding sites and determined that the Kd of the high affinity site is 1.51 ± 0.16 nm. Examination of the contribution of nucleotides near the ends of the site showed that the core binding site consists of 16 bp, 13 of which are conserved between both sites. Analysis of the affinity of each site alone and in tandem revealed that the binding to the second site is primarily due to cooperativity with the first site. Using deletion and point mutations, we show that both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. In addition, we show that the ability of LANA to carry out these functions is directly proportional to its affinity for the sites in this region. The affinities, spacing, and cooperative binding between the two sites is similar to that of the Epstein-Barr virus dyad symmetry elementoriP, suggesting a requirement for such an element in latent replication of these related DNA tumor viruses. The latency-associated nuclear antigen (LANA) of Kaposi's sarcoma-associated herpesvirus is a multifunctional protein with important roles in both transcriptional regulation and episomal maintenance. LANA is also a DNA-binding protein and has been shown to specifically bind to a region within the terminal repeat. Here, we have performed a detailed analysis of the DNA-binding activity of LANA and show that it binds two sites separated by 22 bp. We used electrophoretic mobility shift assay to quantitatively analyze the binding sites and determined that the Kd of the high affinity site is 1.51 ± 0.16 nm. Examination of the contribution of nucleotides near the ends of the site showed that the core binding site consists of 16 bp, 13 of which are conserved between both sites. Analysis of the affinity of each site alone and in tandem revealed that the binding to the second site is primarily due to cooperativity with the first site. Using deletion and point mutations, we show that both sites contribute to the ability of LANA to suppress transcription and to facilitate DNA replication. In addition, we show that the ability of LANA to carry out these functions is directly proportional to its affinity for the sites in this region. The affinities, spacing, and cooperative binding between the two sites is similar to that of the Epstein-Barr virus dyad symmetry elementoriP, suggesting a requirement for such an element in latent replication of these related DNA tumor viruses. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen recombinant LANA open reading frame terminal repeat Epstein-Barr virus EBV nuclear antigen-1 dyad symmetry family of repeats electrophoretic mobility shift assay LANA-binding site modified vaccinia Ankara Ni2+-nitrilotriacetic acid Kaposi's sarcoma-associated herpesvirus (KSHV),1 also called human herpesvirus 8, is a γ2-herpesvirus strongly associated with Kaposi's sarcoma, primary effusion lymphoma, and a plasmablastic variety of multicentric Castleman's disease (1Chang Y. Cesarman E. Pessin M.S. Lee F. Culpepper J. Knowles D.M. Moore P.S. Science. 1994; 266: 1865-1869Crossref PubMed Scopus (4924) Google Scholar, 2Cesarman E. Chang Y. Moore P.S. Said J.W. Knowles D.M. N. Engl. J. Med. 1995; 332: 1186-1191Crossref PubMed Scopus (2483) Google Scholar, 3Dupin N. Diss T.L. Kellam P. Tulliez M., Du, M.Q. Sicard D. Weiss R.A. Isaacson P.G. Boshoff C. Blood. 2000; 95: 1406-1412Crossref PubMed Google Scholar). In these malignancies, the vast majority of tumor cells are latently, as opposed to lytically, infected. During latent infection, the latency-associated nuclear antigen (LANA), as well as a small subset of additional viral genes, is expressed, and the genome is replicated and segregated to infected daughter cells (4Boshoff C. Schulz T.F. Kennedy M.M. Graham A.K. Fisher C. Thomas A. McGee J.O. Weiss R.A. O'Leary J.J. Nat. Med. 1995; 1: 1274-1278Crossref PubMed Scopus (632) Google Scholar, 5Staskus K.A. Zhong W. Gebhard K. Herndier B. Wang H. Renne R. Beneke J. Pudney J. Anderson D.J. Ganem D. Haase A.T. J. Virol. 1997; 71: 715-719Crossref PubMed Google Scholar, 6Zhong W. Wang H. Herndier B. Ganem D. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 6641-6646Crossref PubMed Scopus (410) Google Scholar). LANA is the highly immunogenic gene product of ORF73 (7Kedes D.H. Operskalski E. Busch M. Kohn R. Flood J. Ganem D. Nat. Med. 1996; 2: 918-924Crossref PubMed Scopus (654) Google Scholar, 8Gao S.J. Kingsley L., Li, M. Zheng W. Parravicini C. Ziegler J. Newton R. Rinaldo C.R. Saah A. Phair J. Detels R. Chang Y. Moore P.S. Nat. Med. 1996; 2: 925-928Crossref PubMed Scopus (720) Google Scholar). It has been shown to interact with numerous transcription cofactors, to localize to chromosomes, to specifically bind DNA within the terminal repeat (TR), to form dimers in solution, and to maintain a plasmid containing a single copy of the TR as episomes (9Garber A.C. Shu M.A., Hu, J. Renne R. J. Virol. 2001; 75: 7882-7892Crossref PubMed Scopus (165) Google Scholar, 10Friborg J. Kong W. Hottiger M.O. Nabel G.J. Nature. 2000; 402: 889-894Crossref Scopus (577) Google Scholar, 11Platt G.M. Simpson G.R. Mittnacht S. Schulz T.F. J. Virol. 1999; 73: 9789-9795Crossref PubMed Google Scholar, 12Radkov S.A. Kellam P. Boshoff C. Nat. Med. 2000; 6: 1121-1127Crossref PubMed Scopus (426) Google Scholar, 13Lim C. Sohn H. Gwack Y. Choe J. J. Gen. Virol. 2000; 81: 2645-2652Crossref PubMed Scopus (107) Google Scholar, 14Lim C. Gwack Y. Hwang S. Kim S. Choe J. J. Biol. Chem. 2001; 276: 31016-31022Abstract Full Text Full Text PDF PubMed Scopus (101) Google Scholar, 15Krithivas A. Young D.B. Liao G. Greene D. Hayward S.D. J. Virol. 2000; 74: 9637-9645Crossref PubMed Scopus (174) Google Scholar, 16Ballestas M.E. Chatis P.A. Kaye K.M. Science. 1999; 284: 641-644Crossref PubMed Scopus (598) Google Scholar, 17Ballestas M.E. Kaye K.M. J. Virol. 2001; 75: 3250-3258Crossref PubMed Scopus (212) Google Scholar, 18Cotter M.A., II Subramanian C. Robertson E.S. Virology. 2001; 291: 241-259Crossref PubMed Scopus (108) Google Scholar, 19Schwam D.R. Luciano R.L. Mahajan S.S. Wong L. Wilson A.C. J. Virol. 2000; 74: 8532-8540Crossref PubMed Scopus (130) Google Scholar).The ability to commandeer the cellular replication machinery to replicate extrachromosomal viral genomes has been studied in several viruses, particularly SV40, human papilloma virus, and Epstein-Barr virus (EBV), and their respective origin-binding proteins: large T antigen, E1/E2, and EBNA-1. The recent finding that LANA binds to a region within the KSHV TR and is capable of maintaining a plasmid containing a single copy of the KSHV TR indicates that it also belongs to this functional class of viral origin-binding proteins (9Garber A.C. Shu M.A., Hu, J. Renne R. J. Virol. 2001; 75: 7882-7892Crossref PubMed Scopus (165) Google Scholar, 17Ballestas M.E. Kaye K.M. J. Virol. 2001; 75: 3250-3258Crossref PubMed Scopus (212) Google Scholar, 18Cotter M.A., II Subramanian C. Robertson E.S. Virology. 2001; 291: 241-259Crossref PubMed Scopus (108) Google Scholar). Viral origin-binding proteins directly bind DNA in a sequence-specific manner, but the roles these proteins have in the initiation of replication is still unclear and may vary between the different proteins. For example, large T antigen and E1 both have helicase activity and may themselves serve to unwind DNA during replication, whereas EBNA-1 seems to be dependent on cellular factors for this function (20Dean F.B. Bullock P. Murakami Y. Wobbe C.R. Weissbach L. Hurwitz J. Proc. Natl. Acad. Sci. U. S. A. 1987; 84: 16-20Crossref PubMed Scopus (213) Google Scholar, 21Stahl H. Droge P. Knippers R. EMBO J. 1986; 5: 1939-1944Crossref PubMed Scopus (234) Google Scholar, 22Clertant P. Seif I. Nature. 1984; 311: 276-279Crossref PubMed Scopus (87) Google Scholar, 23Seo Y.S. Muller F. Lusky M. Hurwitz J. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 702-706Crossref PubMed Scopus (176) Google Scholar, 24Yang L. Mohr I. Fouts E. Lim D.A. Nohaile M. Botchan M. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 5086-5090Crossref PubMed Scopus (221) Google Scholar, 25Yates J.L. Warren N. Sugden B. Nature. 1985; 313: 812-815Crossref PubMed Scopus (979) Google Scholar, 26Middleton T. Sugden B. J. Virol. 1992; 66: 1795-1798Crossref PubMed Google Scholar, 27Frappier L. O'Donnell M. Proc. Natl. Acad. Sci. U. S. A. 1991; 88: 10875-10879Crossref PubMed Scopus (102) Google Scholar). However, it is clear that all these viral proteins must facilitate the formation of an initiation-of-replication complex, composed primarily of cellular factors, at or near their binding sites. Each of these viral proteins binds to target DNA sites with distinct arrangements in the origins of replication (23Seo Y.S. Muller F. Lusky M. Hurwitz J. Proc. Natl. Acad. Sci. U. S. A. 1993; 90: 702-706Crossref PubMed Scopus (176) Google Scholar, 28Lorimer H.E. Wang E.H. Prives C. J. Virol. 1991; 65: 687-699Crossref PubMed Google Scholar, 29Harrison S. Fisenne K. Hearing J. J. Virol. 1994; 68: 1913-1925Crossref PubMed Google Scholar, 30Chittenden T. Lupton S. Levine A.J. J. Virol. 1989; 63: 3016-3025Crossref PubMed Google Scholar, 31Mohr I.J. Clark R. Sun S. Androphy E.J. MacPherson P. Botchan M.R. Science. 1990; 250: 1694-1699Crossref PubMed Scopus (327) Google Scholar).Of the known human herpesviruses, EBV has the greatest homology to KSHV. EBV oriP, which requires the trans-acting viral protein EBNA-1, has been studied extensively. It is composed of two elements, the dyad symmetry (DS) and the family of repeats (FR), separated by ∼1 kb of unique sequence. The DS element is composed of two pairs of EBNA-1-binding sites, with the sites in each pair separated by 22 bp, center to center. It is the DS element that, in the presence of EBNA-1, is the functional replicator of oriP(29Harrison S. Fisenne K. Hearing J. J. Virol. 1994; 68: 1913-1925Crossref PubMed Google Scholar, 32Wysokenski D.A. Yates J.L. J. Virol. 1989; 63: 2657-2666Crossref PubMed Google Scholar). The FR element is composed of 20 copies of a 30-bp repeat and is responsible for long-term maintenance of oriP-containing DNA (33Krysan P.J. Haase S.B. Calos M.P. Mol. Cell. Biol. 1989; 9: 1026-1033Crossref PubMed Scopus (216) Google Scholar, 34Marechal V. Dehee A. Chikhi-Brachet R. Piolot T. Coppey-Moisan M. Nicolas J.C. J. Virol. 1999; 73: 4385-4392Crossref PubMed Google Scholar). Recently, it was shown that sequences that lie between the EBNA-1-binding sites are also important, and it has been hypothesized that they may be targets of factors involved in the origin recognition complex (35Koons M.D. Van Scoy S. Hearing J. J. Virol. 2001; 75: 10582-10592Crossref PubMed Scopus (29) Google Scholar).In addition to facilitating DNA replication, viral origin-binding proteins such as EBNA-1 and E2 also have important transcriptional regulatory effects (36Reisman D. Yates J. Sugden B. Mol. Cell. Biol. 1985; 5: 1822-1832Crossref PubMed Scopus (312) Google Scholar, 37Reisman D. Sugden B. Mol. Cell. Biol. 1986; 6: 3838-3846Crossref PubMed Scopus (252) Google Scholar, 38Spalholz B.A. Yang Y.C. Howley P.M. Cell. 1985; 42: 183-191Abstract Full Text PDF PubMed Scopus (203) Google Scholar). Although many of these activities are crucial for regulating viral gene expression (39Gahn T.A. Sugden B. J. Virol. 1995; 69: 2633-2636Crossref PubMed Google Scholar, 40Puglielli M.T. Woisetschlaeger M. Speck S.H. J. Virol. 1996; 70: 5758-5768Crossref PubMed Google Scholar, 41Sugden B. Warren N. J. Virol. 1989; 63: 2644-2649Crossref PubMed Google Scholar, 42Spalholz B.A. Lambert P.F. Yee C.L. Howley P.M. J. Virol. 1987; 61: 2128-2137Crossref PubMed Google Scholar), it has also been suggested that transcriptional activation is necessary for efficient initiation of DNA replication (43Turner W.J. Woodworth M.E. J. Virol. 2001; 75: 5638-5645Crossref PubMed Scopus (12) Google Scholar). In addition to the origin-binding proteins themselves acting as transcriptional activators, the sequences surrounding the origin of replication often contain transcription factor-binding sites, many of which have been shown to directly contribute to DNA replication (43Turner W.J. Woodworth M.E. J. Virol. 2001; 75: 5638-5645Crossref PubMed Scopus (12) Google Scholar, 44Demeret C., Le Moal M. Yaniv M. Thierry F. Nucleic Acids Res. 1995; 23: 4777-4784Crossref PubMed Scopus (56) Google Scholar). KSHV is similar in that the TR DNA, which contains the LANA-binding site and presumably the origin, contains a transcriptional enhancer element (9Garber A.C. Shu M.A., Hu, J. Renne R. J. Virol. 2001; 75: 7882-7892Crossref PubMed Scopus (165) Google Scholar). Despite the fact that LANA has been shown to trans-activate many promoters through interaction with upstream factors, when tethered to DNA by a Gal4-binding domain, LANA has repeatedly been shown to suppress transcription (15Krithivas A. Young D.B. Liao G. Greene D. Hayward S.D. J. Virol. 2000; 74: 9637-9645Crossref PubMed Scopus (174) Google Scholar, 19Schwam D.R. Luciano R.L. Mahajan S.S. Wong L. Wilson A.C. J. Virol. 2000; 74: 8532-8540Crossref PubMed Scopus (130) Google Scholar, 45Knight J.S. Cotter M.A., II Robertson E.S. J. Biol. Chem. 2001; 276: 22971-22978Abstract Full Text Full Text PDF PubMed Scopus (97) Google Scholar, 46Jeong J. Papin J. Dittmer D. J. Virol. 2001; 75: 1798-1807Crossref PubMed Scopus (104) Google Scholar). In addition, we have previously shown that LANA suppresses transcription from a reporter construct containing TR sequences (9Garber A.C. Shu M.A., Hu, J. Renne R. J. Virol. 2001; 75: 7882-7892Crossref PubMed Scopus (165) Google Scholar).To further our understanding of how LANA functions as a viral origin-binding protein, we analyzed the LANA-binding region of the TR and the contributions of the binding sites in this region to the ability of LANA to suppress transcription and to promote DNA replication. Using electrophoretic mobility shift assay (EMSA) and DNase I footprinting, we show that LANA binds to two sites, LANA-binding site 1 (LBS-1) and LANA-binding site 2 (LBS-2), which are separated by 22 bp, center to center. Analysis of LBS-1 indicated that LANA binds with an affinity similar to that of EBNA-1 to the DS element (47Frappier L. O'Donnell M. J. Biol. Chem. 1991; 266: 7819-7826Abstract Full Text PDF PubMed Google Scholar). A detailed quantitative analysis of nucleotides at the termini of the LANA-binding site identified a core binding site consisting of 16 bp, 13 of which are conserved between LBS-1 and LBS-2. Analysis of LBS-1 and LBS-2 alone and in tandem indicated that, like the EBNA-1-binding sites in the DS element, the second site is bound cooperatively. Analyses using a series of deletion and transversion mutations showed that LBS-1 and LBS-2 both contribute to the ability of LANA to suppress transcription and to facilitate replication. Changes to the binding sites resulted in proportional effects in both phenotypes, indicating that LANA may carry out these two functions through related mechanisms.DISCUSSIONDuring latent infection, KSHV maintains its genome as an extrachromosomal episome. Similar to other DNA viruses, SV40, human papilloma virus, and EBV, the replication of the KSHV genome requires atrans-acting viral protein (in this case, LANA) to bind at the origin of replication (ori). These viral orielements, as well as cellular ori elements in general, are associated with numerous transcription factors (44Demeret C., Le Moal M. Yaniv M. Thierry F. Nucleic Acids Res. 1995; 23: 4777-4784Crossref PubMed Scopus (56) Google Scholar,58Toth E.C. Marusic L. Ochem A. Patthy A. Pongor S. Giacca M. Falaschi A. Nucleic Acids Res. 1993; 21: 3257-3263Crossref PubMed Scopus (40) Google Scholar, 59Todd A. Landry S. Pearson C.E. Khoury V. Zannis-Hadjopoulos M. J. Cell. Biochem. 1995; 57: 280-289Crossref PubMed Scopus (25) Google Scholar, 60Tasheva E.S. Roufa D.J. Mol. Cell. Biol. 1994; 14: 5628-5635Crossref PubMed Scopus (39) Google Scholar, 61Marahrens Y. Stillman B. Science. 1992; 255: 817-823Crossref PubMed Scopus (483) Google Scholar, 62Gruffat H. Renner O. Pich D. Hammerschmidt W. J. Virol. 1995; 69: 1878-1886Crossref PubMed Google Scholar, 63Deyerle K.L. Sajjadi F.G. Subramani S. J. Virol. 1989; 63: 356-365Crossref PubMed Google Scholar). The SV40 and human papilloma virus ori elements each contain numerous cellular transcription factor-binding sites, whereas EBV oriP is composed of two elements: the DS element, which contains the replicator element, and the FR element, which is a potent enhancer in the presence of EBNA-1 (29Harrison S. Fisenne K. Hearing J. J. Virol. 1994; 68: 1913-1925Crossref PubMed Google Scholar, 32Wysokenski D.A. Yates J.L. J. Virol. 1989; 63: 2657-2666Crossref PubMed Google Scholar).Here, we show that LANA binds to two sites similar to one-half of the EBV DS element. LBS-1 is a high affinity site capable of facilitating the cooperative binding of LANA to LBS-2, much like sites 1 and 4 of the DS element facilitate binding to sites 2 and 3, respectively (29Harrison S. Fisenne K. Hearing J. J. Virol. 1994; 68: 1913-1925Crossref PubMed Google Scholar,64Summers H. Barwell J.A. Pfuetzner R.A. Edwards A.M. Frappier L. J. Virol. 1996; 70: 1228-1231Crossref PubMed Google Scholar). Either of the DS pair of sites has been shown to be sufficient for at least partial replication (29Harrison S. Fisenne K. Hearing J. J. Virol. 1994; 68: 1913-1925Crossref PubMed Google Scholar, 35Koons M.D. Van Scoy S. Hearing J. J. Virol. 2001; 75: 10582-10592Crossref PubMed Scopus (29) Google Scholar, 65Yates J.L. Camiolo S.M. Bashaw J.M. J. Virol. 2000; 74: 4512-4522Crossref PubMed Scopus (112) Google Scholar). Although the molecular details have not been established to the same degree, two other γ-herpesviruses, herpesvirus saimiri and herpesvirus papio, also contain similar DS-like elements in their respective orielements (66Loeb D.D. Sung N.S. Pesano R.L. Sexton C.J. Hutchison III, C. Pagano J.S. J. Virol. 1990; 64: 2876-2883Crossref PubMed Google Scholar, 67Yates J.L. Camiolo S.M. Ali S. Ying A. Virology. 1996; 222: 1-13Crossref PubMed Scopus (58) Google Scholar, 68Kung S.H. Medveczky P.G. J. Virol. 1996; 70: 1738-1744Crossref PubMed Google Scholar). These conserved similarities suggest that the disparate affinity and cooperative binding of the two sites are important to extrachromosomal DNA replication. However, manipulation of this arrangement by converting LBS-2 into a high affinity site did not cause a significant reduction in replication. It is possible that this conserved arrangement of sites is not critical to replication of relatively small plasmids, but is important in the context of replicating the entire 140-kb genome. It is also possible that the distinctive arrangement of this element plays a role in the regulation of origin firing, which may not be critical in rapidly dividing cell lines.As we better resolve the KSHV latent ori element, one notable difference from EBV is the lack of an FR element. The FR element of EBV is essential for long-term maintenance of episomal DNA, presumably by tethering the plasmid to the chromosomes for proper segregation to daughter cells (34Marechal V. Dehee A. Chikhi-Brachet R. Piolot T. Coppey-Moisan M. Nicolas J.C. J. Virol. 1999; 73: 4385-4392Crossref PubMed Google Scholar, 69Wu H. Ceccarelli D.F. Frappier L. EMBO Rep. 2000; 1: 140-144Crossref PubMed Scopus (85) Google Scholar, 70Hung S.C. Kang M.S. Kieff E. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 1865-1870Crossref PubMed Scopus (143) Google Scholar, 71Kanda T. Otter M. Wahl G.M. J. Cell Sci. 2001; 114: 49-58PubMed Google Scholar). Three copies of the DS element can be used to replace the FR element and to reconstitute its maintenance function (32Wysokenski D.A. Yates J.L. J. Virol. 1989; 63: 2657-2666Crossref PubMed Google Scholar). The strong transcriptional enhancer activity of the FR element indicates that, when bound by EBNA-1, it also has an effect on DNA structure, perhaps serving a function analogous to the cellular transcription factors associated with other orielements. Although the KSHV putative latent ori element has no FR-type structure, the TR, which contains LBS-1 and LBS-2, is repeated 30–40 times in the KSHV genome; this repetition may be sufficient to serve the maintenance function in a manner similar to the multimerized DS element. When multimerized, as is the case in the genome, the KSHV TR is a potent enhancer (9Garber A.C. Shu M.A., Hu, J. Renne R. J. Virol. 2001; 75: 7882-7892Crossref PubMed Scopus (165) Google Scholar); transcription factors employed in this enhancer could serve chromatin-remodeling functions similar to those of the FR element in EBV.We have shown that the ability of the LANA C-terminal domain to suppress TR enhancer-dependent transcription is directly proportional to its ability to bind at LBS-1 and LBS-2. No other viral origin-binding protein has been reported to negatively regulate transcription in this way. Large T antigen and E2 of human papilloma virus both suppress transcription by binding DNA and inhibiting transcription complex formation at promoters, but not from enhancers (72Thierry F. Yaniv M. EMBO J. 1987; 6: 3391-3397Crossref PubMed Scopus (192) Google Scholar, 73Myers R.M. Rio D.C. Robbins A.K. Tjian R. Cell. 1981; 25: 373-384Abstract Full Text PDF PubMed Scopus (127) Google Scholar). In most cases, E2 and EBNA-1 act as strong transcriptional activators when bound to DNA (36Reisman D. Yates J. Sugden B. Mol. Cell. Biol. 1985; 5: 1822-1832Crossref PubMed Scopus (312) Google Scholar, 37Reisman D. Sugden B. Mol. Cell. Biol. 1986; 6: 3838-3846Crossref PubMed Scopus (252) Google Scholar, 38Spalholz B.A. Yang Y.C. Howley P.M. Cell. 1985; 42: 183-191Abstract Full Text PDF PubMed Scopus (203) Google Scholar, 39Gahn T.A. Sugden B. J. Virol. 1995; 69: 2633-2636Crossref PubMed Google Scholar, 40Puglielli M.T. Woisetschlaeger M. Speck S.H. J. Virol. 1996; 70: 5758-5768Crossref PubMed Google Scholar, 41Sugden B. Warren N. J. Virol. 1989; 63: 2644-2649Crossref PubMed Google Scholar, 42Spalholz B.A. Lambert P.F. Yee C.L. Howley P.M. J. Virol. 1987; 61: 2128-2137Crossref PubMed Google Scholar). Some qualities of transcription factor activation must be required for efficient replication function, as transcription factor associations are found in most well studied origins of replication (44Demeret C., Le Moal M. Yaniv M. Thierry F. Nucleic Acids Res. 1995; 23: 4777-4784Crossref PubMed Scopus (56) Google Scholar, 58Toth E.C. Marusic L. Ochem A. Patthy A. Pongor S. Giacca M. Falaschi A. Nucleic Acids Res. 1993; 21: 3257-3263Crossref PubMed Scopus (40) Google Scholar, 59Todd A. Landry S. Pearson C.E. Khoury V. Zannis-Hadjopoulos M. J. Cell. Biochem. 1995; 57: 280-289Crossref PubMed Scopus (25) Google Scholar, 60Tasheva E.S. Roufa D.J. Mol. Cell. Biol. 1994; 14: 5628-5635Crossref PubMed Scopus (39) Google Scholar, 61Marahrens Y. Stillman B. Science. 1992; 255: 817-823Crossref PubMed Scopus (483) Google Scholar, 62Gruffat H. Renner O. Pich D. Hammerschmidt W. J. Virol. 1995; 69: 1878-1886Crossref PubMed Google Scholar, 63Deyerle K.L. Sajjadi F.G. Subramani S. J. Virol. 1989; 63: 356-365Crossref PubMed Google Scholar). In many cases, the efficiency of replication has been linked to the presence of these transcriptional activators (43Turner W.J. Woodworth M.E. J. Virol. 2001; 75: 5638-5645Crossref PubMed Scopus (12) Google Scholar, 74Baumann M. Feederle R. Kremmer E. Hammerschmidt W. EMBO J. 1999; 18: 6095-6105Crossref PubMed Scopus (55) Google Scholar, 75Li R. J. Biol. Chem. 1999; 274: 30310-30314Abstract Full Text Full Text PDF PubMed Scopus (16) Google Scholar). With this in mind, it seems strange that LANA would be acting as a transcriptional suppressor. However, it is the presence of transcriptional activators that activate replication, not transcription itself. In fact, transcriptional activity has been shown to be inversely proportional to replication in autonomously replicating chromosomes (76Haase S.B. Heinzel S.S. Calos M.P. Mol. Cell. Biol. 1994; 14: 2516-2524Crossref PubMed Scopus (54) Google Scholar). This finding supports the idea that some contribution of transcription factors, probably chromatin remodeling, is necessary for the formation of pre-replication complexes and the subsequent initiation of DNA replication, whereas transcription itself is inhibitory.Manipulations of the binding sites of LANA cause similar changes in both its ability to suppress transcription and to facilitate DNA replication (Figs. 5 and 6). This indicates that the mechanisms of these processes may be related or interdependent such that replication may inhibit local transcription, or transcription may need to be inhibited to facilitate efficient replication. This hypothesis is further supported by the fact that the LANA C-terminal domain alone is sufficient for transcriptional suppression and DNA replication (9Garber A.C. Shu M.A., Hu, J. Renne R. J. Virol. 2001; 75: 7882-7892Crossref PubMed Scopus (165) Google Scholar).2 Our finding that the TR element contains enhancer activity is in congruence with the presence of transcriptional activity within the vicinity of all cellular and viral origins of replication. The mechanism by which LANA suppresses this transcriptional activation and at the same time facilitates DNA replication needs to be further elucidated. It has recently been shown that origin recognition complex/EBNA-1 interaction is critical for oriP function (77Schepers A. Ritzi M. Bousset K. Kremmer E. Yates J.L. Harwood J. Diffley J.F. Hammerschmidt W. EMBO J. 2001; 20: 4588-4602Crossref PubMed Scopus (190) Google Scholar, 78Dhar S.K. Yoshida K. Machida Y. Khaira P. Chaudhuri B. Wohlschlegel J.A. Leffak M. Yates J. Dutta A. Cell. 2001; 106: 287-296Abstract Full Text Full Text PDF PubMed Scopus (245) Google Scholar, 79Chaudhuri B., Xu, H. Todorov I. Dutta A. Yates J.L. Proc. Natl. Acad. Sci. U. S. A. 2001; 98: 10085-10089Crossref PubMed Scopus (180) Google Scholar). The Origin recognition complex plays an important role in the assembly of heterochromatin and chromosome condensation (80Pak D.T. Pflumm M. Chesnokov I. Huang D.W. Kellum R. Marr J. Romanowski P. Botchan M.R. Cell. 1997; 91: 311-323Abstract Full Text Full Text PDF PubMed Scopus (338) Google Scholar, 81Loupart M.L. Krause S.A. Heck M.S. Curr. Biol. 2000; 10: 1547-1556Abstract Full Text Full Text PDF PubMed Scopus (97) Google Scholar, 82Pflumm M.F. Botchan M.R. Development. 2001; 128: 1697-1707PubMed Google Scholar), and LANA has been shown to co-localize with heterochromatic regions (83Szekely L. Kiss C. Mattsson K. Kashuba E. Pokrovskaja K. Juhasz A. Holmvall P. Klein G. J. Gen. Virol. 1999; 80: 2889-2900Crossref PubMed Scopus (86) Google Scholar). Our results are consistent with a model in which the binding affinity of LANA for LBS-1 and LBS-2 within the TR determines its ability to mediate the interaction between the viral episomal genome, the origin recognition complex, and a manifest heterochromatic environment, conducive to DNA replication and inhibitory to transcription. Kaposi's sarcoma-associated herpesvirus (KSHV),1 also called human herpesvirus 8, is a γ2-herpesvirus strongly associated with Kaposi's sarcoma, primary effusion lymphoma, and a plasmablastic variety of multicentric Castleman's disease (1Chang Y. Cesarman E. Pessin M.S. Lee F. Culpepper J. Knowles D.M. Moore P.S. Science. 1994; 266: 1865-1869Crossref PubMed Scopus (4924) Google Scholar, 2Cesarman E. Chang Y. Moore P.S. Said J.W. Knowles D.M. N. Engl. J. Med. 1995; 332: 1186-1191Crossref PubMed Scopus (2483) Google Scholar, 3Dupin N. Diss T.L. Kellam P. Tulliez M., Du, M.Q. Sicard D. Weiss R.A. Isaacson P.G. Boshoff C. Blood. 2000; 95: 1406-1412Crossref PubMed Google Scholar). In these malignancies, the vast majority of tumor cells are latently, as opposed to lytically, infected. During latent infection, the latency-associated nuclear antigen (LANA), as well as a small subset of additional viral genes, is expressed, and the genome is replicated and segregated to infected daughter cells (4Boshoff C. Schulz T.F. Kennedy M.M. Graham A.K. Fisher C. Thomas A. McGee J.O. Weiss R.A. O'Leary J.J. Nat. Med. 1995; 1: 1274-1278Crossref PubMed Scopus (632) Google Scholar, 5Staskus K.A. Zhong W. Gebhard K. Herndier B. Wang H. Renne R. Beneke J. Pudney J. Anderson D.J. Ganem D. Haase A.T. J. Virol. 1997; 71: 715-719Crossref PubMed Google Scholar, 6Zhong W. Wang H. Herndier B. Ganem D. Proc. Natl. Acad. Sci. U. S. A. 1996; 93: 6641-6646Crossref PubMed Scopus (410) Google Scholar). LANA is the highly immunogenic gene product of ORF73 (7Kedes D.H. Operskalski E. Busch M. Kohn R. Flood J. Ganem D. Nat. Med. 1996; 2: 918-924Crossref PubMed Scopus (654) Google Scholar, 8Gao S.J. Kingsley L., Li, M. Zheng W. Parravicini C. Ziegler J. Newton R. Rinaldo C.R. Saah A. Phair J. Detels R. Chang Y. Moore P.S. Nat. Med. 1996; 2: 925-928Crossref PubMed Scopus (720) Google Scholar). It has been shown to interact with numerous transcription cofactors, to localize to chromosomes, to specifically bind DNA within the terminal repeat (TR), to form dimers in solution, and to maintain a plasmid containing a single copy of the TR as episomes (9Garber A.C. Shu M.A., Hu, J. Renne R. J. Virol. 2001; 75: 7882-7892Crossref PubMed Scopus (165) Google Scholar, 10Friborg J. Kong W. Hottiger M.O. Nabel G.J. Nature. 2000; 402: 889-894Crossref Sc" @default.
- W1988760901 created "2016-06-24" @default.
- W1988760901 creator A5021478080 @default.
- W1988760901 creator A5032322535 @default.
- W1988760901 creator A5047905175 @default.
- W1988760901 date "2002-07-01" @default.
- W1988760901 modified "2023-10-13" @default.
- W1988760901 title "Latency-associated Nuclear Antigen (LANA) Cooperatively Binds to Two Sites within the Terminal Repeat, and Both Sites Contribute to the Ability of LANA to Suppress Transcription and to Facilitate DNA Replication" @default.
- W1988760901 cites W1486001308 @default.
- W1988760901 cites W1522483336 @default.
- W1988760901 cites W1531193576 @default.
- W1988760901 cites W1558516755 @default.
- W1988760901 cites W1573217573 @default.
- W1988760901 cites W1594478849 @default.
- W1988760901 cites W1604210388 @default.
- W1988760901 cites W1635039246 @default.
- W1988760901 cites W1673837423 @default.
- W1988760901 cites W1696730408 @default.
- W1988760901 cites W1800129325 @default.
- W1988760901 cites W1827441151 @default.
- W1988760901 cites W1856464455 @default.
- W1988760901 cites W1861124997 @default.
- W1988760901 cites W1888245696 @default.
- W1988760901 cites W1912884020 @default.
- W1988760901 cites W1920718601 @default.
- W1988760901 cites W1957748504 @default.
- W1988760901 cites W1959134117 @default.
- W1988760901 cites W1966124176 @default.
- W1988760901 cites W1966340370 @default.
- W1988760901 cites W1967847292 @default.
- W1988760901 cites W1972148236 @default.
- W1988760901 cites W1974548990 @default.
- W1988760901 cites W1977393774 @default.
- W1988760901 cites W1981525236 @default.
- W1988760901 cites W1982453928 @default.
- W1988760901 cites W1982895273 @default.
- W1988760901 cites W1983158033 @default.
- W1988760901 cites W1983502631 @default.
- W1988760901 cites W2004920405 @default.
- W1988760901 cites W2006155105 @default.
- W1988760901 cites W2006224384 @default.
- W1988760901 cites W2009785322 @default.
- W1988760901 cites W2013597873 @default.
- W1988760901 cites W2013739925 @default.
- W1988760901 cites W2015221134 @default.
- W1988760901 cites W2020458592 @default.
- W1988760901 cites W2022125636 @default.
- W1988760901 cites W2028613979 @default.
- W1988760901 cites W2032438721 @default.
- W1988760901 cites W2034939127 @default.
- W1988760901 cites W2035092384 @default.
- W1988760901 cites W2043436845 @default.
- W1988760901 cites W2045327902 @default.
- W1988760901 cites W2051607622 @default.
- W1988760901 cites W2055440283 @default.
- W1988760901 cites W2061449183 @default.
- W1988760901 cites W2061557617 @default.
- W1988760901 cites W2061647921 @default.
- W1988760901 cites W2066410692 @default.
- W1988760901 cites W2070335382 @default.
- W1988760901 cites W2073825815 @default.
- W1988760901 cites W2075873712 @default.
- W1988760901 cites W2078682316 @default.
- W1988760901 cites W2081651119 @default.
- W1988760901 cites W2096591944 @default.
- W1988760901 cites W2099150686 @default.
- W1988760901 cites W2104605112 @default.
- W1988760901 cites W2104802957 @default.
- W1988760901 cites W2106295967 @default.
- W1988760901 cites W2106882164 @default.
- W1988760901 cites W2110599787 @default.
- W1988760901 cites W2123488018 @default.
- W1988760901 cites W2124125886 @default.
- W1988760901 cites W2124375605 @default.
- W1988760901 cites W2132985635 @default.
- W1988760901 cites W2134190424 @default.
- W1988760901 cites W2134447274 @default.
- W1988760901 cites W2141819594 @default.
- W1988760901 cites W2142611898 @default.
- W1988760901 cites W2143090686 @default.
- W1988760901 cites W2143118331 @default.
- W1988760901 cites W2144126736 @default.
- W1988760901 cites W2144753766 @default.
- W1988760901 cites W2155587524 @default.
- W1988760901 cites W2159163386 @default.
- W1988760901 cites W2159265435 @default.
- W1988760901 cites W2170096097 @default.
- W1988760901 cites W2336241188 @default.
- W1988760901 cites W4247454759 @default.
- W1988760901 cites W93885486 @default.
- W1988760901 doi "https://doi.org/10.1074/jbc.m203489200" @default.
- W1988760901 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/12015325" @default.
- W1988760901 hasPublicationYear "2002" @default.
- W1988760901 type Work @default.
- W1988760901 sameAs 1988760901 @default.
- W1988760901 citedByCount "167" @default.
- W1988760901 countsByYear W19887609012012 @default.
- W1988760901 countsByYear W19887609012013 @default.