Matches in SemOpenAlex for { <https://semopenalex.org/work/W1988868909> ?p ?o ?g. }
- W1988868909 endingPage "658" @default.
- W1988868909 startingPage "629" @default.
- W1988868909 abstract "Many clustering methods, such as K -means, kernel K -means, and MNcut clustering, follow the same recipe: (i) choose a measure of similarity between observations; (ii) define a figure of merit assigning a large value to partitions of the data that put similar observations in the same cluster; and (iii) optimize this figure of merit over partitions. Potts model clustering represents an interesting variation on this recipe. Blatt, Wiseman, and Domany defined a new figure of merit for partitions that is formally similar to the Hamiltonian of the Potts model for ferromagnetism, extensively studied in statistical physics. For each temperature T, the Hamiltonian defines a distribution assigning a probability to each possible configuration of the physical system or, in the language of clustering, to each partition. Instead of searching for a single partition optimizing the Hamiltonian, they sampled a large number of partitions from this distribution for a range of temperatures. They proposed a heuristic for choosing an appropriate temperature and from the sample of partitions associated with this chosen temperature, they then derived what we call a consensus clustering: two observations are put in the same consensus cluster if they belong to the same cluster in the majority of the random partitions. In a sense, the consensus clustering is an “average” of plausible configurations, and we would expect it to be more stable (over different samples)than the configuration optimizing the Hamiltonian.The goal of this article is to contribute to the understanding of Potts model clustering and to propose extensions and improvements: (1) We show that the Hamiltonian used in Potts model clustering is closely related to the kernel K -means and MNCutcriteria. (2) We propose a modification of the Hamiltonian penalizing unequal clustersizes and show that it can be interpreted as a weighted version of the kernel K -meanscriterion. (3) We introduce a new version of the Wolff algorithm to simulate configurations from the distribution defined by the penalized Hamiltonian, leading to penalized Potts model clustering. (4) We note a link between kernel based clustering methods and nonparametric density estimation and exploit it to automatically determine locally adaptive kernel bandwidths. (5) We propose a new simple rule for selecting a good temperature T.As an illustration we apply Potts model clustering to gene expression data and compare our results to those obtained by model based clustering and a nonparametric dendrogram sharpening method." @default.
- W1988868909 created "2016-06-24" @default.
- W1988868909 creator A5014226146 @default.
- W1988868909 creator A5027273230 @default.
- W1988868909 creator A5068385320 @default.
- W1988868909 date "2008-09-01" @default.
- W1988868909 modified "2023-10-17" @default.
- W1988868909 title "On Potts Model Clustering, Kernel<i>K</i>-Means and Density Estimation" @default.
- W1988868909 cites W1512096212 @default.
- W1988868909 cites W194523672 @default.
- W1988868909 cites W1969758109 @default.
- W1988868909 cites W1975120776 @default.
- W1988868909 cites W1977870419 @default.
- W1988868909 cites W1979753981 @default.
- W1988868909 cites W1983628095 @default.
- W1988868909 cites W1989777071 @default.
- W1988868909 cites W1992107140 @default.
- W1988868909 cites W1999541312 @default.
- W1988868909 cites W2001144837 @default.
- W1988868909 cites W2020999234 @default.
- W1988868909 cites W2023502716 @default.
- W1988868909 cites W2026257997 @default.
- W1988868909 cites W2037139490 @default.
- W1988868909 cites W2043154233 @default.
- W1988868909 cites W2044734635 @default.
- W1988868909 cites W2056760934 @default.
- W1988868909 cites W2070143079 @default.
- W1988868909 cites W2070708981 @default.
- W1988868909 cites W2082503527 @default.
- W1988868909 cites W2086718942 @default.
- W1988868909 cites W2089349283 @default.
- W1988868909 cites W2090634555 @default.
- W1988868909 cites W2107208924 @default.
- W1988868909 cites W2115346774 @default.
- W1988868909 cites W2121947440 @default.
- W1988868909 cites W2125687218 @default.
- W1988868909 cites W2129932701 @default.
- W1988868909 cites W2130729065 @default.
- W1988868909 cites W2130851950 @default.
- W1988868909 cites W2136104104 @default.
- W1988868909 cites W2138218344 @default.
- W1988868909 cites W2138309709 @default.
- W1988868909 cites W2142460132 @default.
- W1988868909 cites W2146646206 @default.
- W1988868909 cites W2150926065 @default.
- W1988868909 cites W2163872065 @default.
- W1988868909 cites W2217282979 @default.
- W1988868909 cites W2318802957 @default.
- W1988868909 cites W4235169531 @default.
- W1988868909 cites W4243692913 @default.
- W1988868909 cites W4244030505 @default.
- W1988868909 cites W4245003414 @default.
- W1988868909 cites W4246833555 @default.
- W1988868909 doi "https://doi.org/10.1198/106186008x318855" @default.
- W1988868909 hasPublicationYear "2008" @default.
- W1988868909 type Work @default.
- W1988868909 sameAs 1988868909 @default.
- W1988868909 citedByCount "15" @default.
- W1988868909 countsByYear W19888689092013 @default.
- W1988868909 countsByYear W19888689092014 @default.
- W1988868909 countsByYear W19888689092015 @default.
- W1988868909 countsByYear W19888689092017 @default.
- W1988868909 countsByYear W19888689092020 @default.
- W1988868909 countsByYear W19888689092021 @default.
- W1988868909 countsByYear W19888689092022 @default.
- W1988868909 countsByYear W19888689092023 @default.
- W1988868909 crossrefType "journal-article" @default.
- W1988868909 hasAuthorship W1988868909A5014226146 @default.
- W1988868909 hasAuthorship W1988868909A5027273230 @default.
- W1988868909 hasAuthorship W1988868909A5068385320 @default.
- W1988868909 hasConcept C105795698 @default.
- W1988868909 hasConcept C114614502 @default.
- W1988868909 hasConcept C121332964 @default.
- W1988868909 hasConcept C121864883 @default.
- W1988868909 hasConcept C33923547 @default.
- W1988868909 hasConcept C42812 @default.
- W1988868909 hasConcept C51329190 @default.
- W1988868909 hasConcept C73555534 @default.
- W1988868909 hasConcept C98925819 @default.
- W1988868909 hasConceptScore W1988868909C105795698 @default.
- W1988868909 hasConceptScore W1988868909C114614502 @default.
- W1988868909 hasConceptScore W1988868909C121332964 @default.
- W1988868909 hasConceptScore W1988868909C121864883 @default.
- W1988868909 hasConceptScore W1988868909C33923547 @default.
- W1988868909 hasConceptScore W1988868909C42812 @default.
- W1988868909 hasConceptScore W1988868909C51329190 @default.
- W1988868909 hasConceptScore W1988868909C73555534 @default.
- W1988868909 hasConceptScore W1988868909C98925819 @default.
- W1988868909 hasIssue "3" @default.
- W1988868909 hasLocation W19888689091 @default.
- W1988868909 hasOpenAccess W1988868909 @default.
- W1988868909 hasPrimaryLocation W19888689091 @default.
- W1988868909 hasRelatedWork W2031004667 @default.
- W1988868909 hasRelatedWork W2080533079 @default.
- W1988868909 hasRelatedWork W2085419898 @default.
- W1988868909 hasRelatedWork W2728224919 @default.
- W1988868909 hasRelatedWork W2783654391 @default.
- W1988868909 hasRelatedWork W2951521427 @default.