Matches in SemOpenAlex for { <https://semopenalex.org/work/W1989046554> ?p ?o ?g. }
- W1989046554 endingPage "1686" @default.
- W1989046554 startingPage "1652" @default.
- W1989046554 abstract "The scattering of Dirac electrons by topological defects could be one of the most relevant sources of resistance in graphene and at the boundary surfaces of a three-dimensional topological insulator (3D TI). In the long wavelength, continuous limit of the Dirac equation, the topological defect can be described as a distortion of the metric in curved space, which can be accounted for by a rotation of the Gamma matrices and by a spin connection inherited with the curvature. These features modify the scattering properties of the carriers. We discuss the self-energy of defect formation with this approach and the electron cross-section for intra-valley scattering at an edge dislocation in graphene, including corrections coming from the local stress. The cross-section contribution to the resistivity, ρ, is derived within the Boltzmann theory of transport. On the same lines, we discuss the scattering of a screw dislocation in a two-band 3D TI, like Bi1-xSbx, and we present the analytical simplified form of the wavefunction for gapless helical states bound at the defect. When a 3D TI is sandwiched between two even-parity superconductors, Dirac boundary states acquire superconductive correlations by proximity. In the presence of a magnetic vortex piercing the heterostructure, two Majorana states are localized at the two interfaces and bound to the vortex core. They have a half integer total angular momentum each, to match with the unitary orbital angular momentum of the vortex charge." @default.
- W1989046554 created "2016-06-24" @default.
- W1989046554 creator A5014046418 @default.
- W1989046554 creator A5056404002 @default.
- W1989046554 creator A5072474923 @default.
- W1989046554 creator A5073467817 @default.
- W1989046554 creator A5078299356 @default.
- W1989046554 date "2014-03-04" @default.
- W1989046554 modified "2023-09-30" @default.
- W1989046554 title "Topological Defects in Topological Insulators and Bound States at Topological Superconductor Vortices" @default.
- W1989046554 cites W1515849572 @default.
- W1989046554 cites W1521964342 @default.
- W1989046554 cites W1528946541 @default.
- W1989046554 cites W1552055731 @default.
- W1989046554 cites W1577559372 @default.
- W1989046554 cites W1577573132 @default.
- W1989046554 cites W1618587172 @default.
- W1989046554 cites W1634586055 @default.
- W1989046554 cites W1655613450 @default.
- W1989046554 cites W1692383593 @default.
- W1989046554 cites W1760544772 @default.
- W1989046554 cites W1852053816 @default.
- W1989046554 cites W1905539406 @default.
- W1989046554 cites W1948123192 @default.
- W1989046554 cites W1963662913 @default.
- W1989046554 cites W1964140368 @default.
- W1989046554 cites W1968150608 @default.
- W1989046554 cites W1972857142 @default.
- W1989046554 cites W1973835454 @default.
- W1989046554 cites W1974943886 @default.
- W1989046554 cites W1974977862 @default.
- W1989046554 cites W1975993435 @default.
- W1989046554 cites W1976731632 @default.
- W1989046554 cites W1976793520 @default.
- W1989046554 cites W1980608658 @default.
- W1989046554 cites W1982311541 @default.
- W1989046554 cites W1984814850 @default.
- W1989046554 cites W1986517262 @default.
- W1989046554 cites W1987243073 @default.
- W1989046554 cites W1987279663 @default.
- W1989046554 cites W1992940474 @default.
- W1989046554 cites W1996119766 @default.
- W1989046554 cites W1996975212 @default.
- W1989046554 cites W2001755358 @default.
- W1989046554 cites W2002155984 @default.
- W1989046554 cites W2002560737 @default.
- W1989046554 cites W2003385355 @default.
- W1989046554 cites W2003527655 @default.
- W1989046554 cites W2014665129 @default.
- W1989046554 cites W2014935324 @default.
- W1989046554 cites W2016175745 @default.
- W1989046554 cites W2018639013 @default.
- W1989046554 cites W2018947791 @default.
- W1989046554 cites W2019559923 @default.
- W1989046554 cites W2020332193 @default.
- W1989046554 cites W2025729993 @default.
- W1989046554 cites W2026167865 @default.
- W1989046554 cites W2026237155 @default.
- W1989046554 cites W2026385916 @default.
- W1989046554 cites W2031028572 @default.
- W1989046554 cites W2039131733 @default.
- W1989046554 cites W2048749954 @default.
- W1989046554 cites W2052560747 @default.
- W1989046554 cites W2057762638 @default.
- W1989046554 cites W2058558897 @default.
- W1989046554 cites W2064059056 @default.
- W1989046554 cites W2067291168 @default.
- W1989046554 cites W2070506291 @default.
- W1989046554 cites W2072324928 @default.
- W1989046554 cites W2080181427 @default.
- W1989046554 cites W2082125569 @default.
- W1989046554 cites W2082406622 @default.
- W1989046554 cites W2084266112 @default.
- W1989046554 cites W2085539225 @default.
- W1989046554 cites W2088498991 @default.
- W1989046554 cites W2102074887 @default.
- W1989046554 cites W2105685140 @default.
- W1989046554 cites W2108283762 @default.
- W1989046554 cites W2117765371 @default.
- W1989046554 cites W2118492507 @default.
- W1989046554 cites W2125284466 @default.
- W1989046554 cites W2138343872 @default.
- W1989046554 cites W2141484758 @default.
- W1989046554 cites W2149672583 @default.
- W1989046554 cites W2152240519 @default.
- W1989046554 cites W2152716455 @default.
- W1989046554 cites W2153852402 @default.
- W1989046554 cites W2155727057 @default.
- W1989046554 cites W2168213201 @default.
- W1989046554 cites W2168226651 @default.
- W1989046554 cites W2171464705 @default.
- W1989046554 cites W2266771227 @default.
- W1989046554 cites W3099943863 @default.
- W1989046554 cites W3102967799 @default.
- W1989046554 cites W3103167290 @default.
- W1989046554 cites W3104429924 @default.
- W1989046554 cites W3105605562 @default.
- W1989046554 doi "https://doi.org/10.3390/ma7031652" @default.