Matches in SemOpenAlex for { <https://semopenalex.org/work/W1989076763> ?p ?o ?g. }
- W1989076763 endingPage "1079" @default.
- W1989076763 startingPage "1073" @default.
- W1989076763 abstract "Recently, the ratio of probability density functions was demonstrated to be useful in solving various machine learning tasks such as outlier detection, non-stationarity adaptation, feature selection, and clustering. The key idea of this density ratio approach is that the ratio is directly estimated so that difficult density estimation is avoided. So far, parametric and non-parametric direct density ratio estimators with various loss functions have been developed, and the kernel least-squares method was demonstrated to be highly useful both in terms of accuracy and computational efficiency. On the other hand, recent study in pattern recognition exhibited that deep architectures such as a convolutional neural network can significantly outperform kernel methods. In this paper, we propose to use the convolutional neural network in density ratio estimation, and experimentally show that the proposed method tends to outperform the kernel-based method in outlying image detection." @default.
- W1989076763 created "2016-06-24" @default.
- W1989076763 creator A5024992433 @default.
- W1989076763 creator A5063407210 @default.
- W1989076763 date "2015-01-01" @default.
- W1989076763 modified "2023-10-05" @default.
- W1989076763 title "Direct Density Ratio Estimation with Convolutional Neural Networks with Application in Outlier Detection" @default.
- W1989076763 cites W123476658 @default.
- W1989076763 cites W1905487287 @default.
- W1989076763 cites W1966026565 @default.
- W1989076763 cites W1974314970 @default.
- W1989076763 cites W1990970321 @default.
- W1989076763 cites W1994197834 @default.
- W1989076763 cites W2008901952 @default.
- W1989076763 cites W2062291443 @default.
- W1989076763 cites W2086619942 @default.
- W1989076763 cites W2101926813 @default.
- W1989076763 cites W2112796928 @default.
- W1989076763 cites W2117553576 @default.
- W1989076763 cites W2118882002 @default.
- W1989076763 cites W2130325614 @default.
- W1989076763 cites W2144182447 @default.
- W1989076763 cites W2155183960 @default.
- W1989076763 cites W2166944917 @default.
- W1989076763 cites W2169805405 @default.
- W1989076763 cites W91088564 @default.
- W1989076763 doi "https://doi.org/10.1587/transinf.2014edp7335" @default.
- W1989076763 hasPublicationYear "2015" @default.
- W1989076763 type Work @default.
- W1989076763 sameAs 1989076763 @default.
- W1989076763 citedByCount "23" @default.
- W1989076763 countsByYear W19890767632016 @default.
- W1989076763 countsByYear W19890767632018 @default.
- W1989076763 countsByYear W19890767632019 @default.
- W1989076763 countsByYear W19890767632020 @default.
- W1989076763 countsByYear W19890767632021 @default.
- W1989076763 countsByYear W19890767632022 @default.
- W1989076763 countsByYear W19890767632023 @default.
- W1989076763 crossrefType "journal-article" @default.
- W1989076763 hasAuthorship W1989076763A5024992433 @default.
- W1989076763 hasAuthorship W1989076763A5063407210 @default.
- W1989076763 hasBestOaLocation W19890767631 @default.
- W1989076763 hasConcept C105795698 @default.
- W1989076763 hasConcept C114614502 @default.
- W1989076763 hasConcept C117251300 @default.
- W1989076763 hasConcept C122280245 @default.
- W1989076763 hasConcept C12267149 @default.
- W1989076763 hasConcept C153180895 @default.
- W1989076763 hasConcept C154945302 @default.
- W1989076763 hasConcept C185429906 @default.
- W1989076763 hasConcept C189508267 @default.
- W1989076763 hasConcept C195699287 @default.
- W1989076763 hasConcept C33923547 @default.
- W1989076763 hasConcept C41008148 @default.
- W1989076763 hasConcept C50644808 @default.
- W1989076763 hasConcept C71134354 @default.
- W1989076763 hasConcept C739882 @default.
- W1989076763 hasConcept C74193536 @default.
- W1989076763 hasConcept C79337645 @default.
- W1989076763 hasConcept C81363708 @default.
- W1989076763 hasConcept C84894716 @default.
- W1989076763 hasConceptScore W1989076763C105795698 @default.
- W1989076763 hasConceptScore W1989076763C114614502 @default.
- W1989076763 hasConceptScore W1989076763C117251300 @default.
- W1989076763 hasConceptScore W1989076763C122280245 @default.
- W1989076763 hasConceptScore W1989076763C12267149 @default.
- W1989076763 hasConceptScore W1989076763C153180895 @default.
- W1989076763 hasConceptScore W1989076763C154945302 @default.
- W1989076763 hasConceptScore W1989076763C185429906 @default.
- W1989076763 hasConceptScore W1989076763C189508267 @default.
- W1989076763 hasConceptScore W1989076763C195699287 @default.
- W1989076763 hasConceptScore W1989076763C33923547 @default.
- W1989076763 hasConceptScore W1989076763C41008148 @default.
- W1989076763 hasConceptScore W1989076763C50644808 @default.
- W1989076763 hasConceptScore W1989076763C71134354 @default.
- W1989076763 hasConceptScore W1989076763C739882 @default.
- W1989076763 hasConceptScore W1989076763C74193536 @default.
- W1989076763 hasConceptScore W1989076763C79337645 @default.
- W1989076763 hasConceptScore W1989076763C81363708 @default.
- W1989076763 hasConceptScore W1989076763C84894716 @default.
- W1989076763 hasIssue "5" @default.
- W1989076763 hasLocation W19890767631 @default.
- W1989076763 hasOpenAccess W1989076763 @default.
- W1989076763 hasPrimaryLocation W19890767631 @default.
- W1989076763 hasRelatedWork W126266486 @default.
- W1989076763 hasRelatedWork W1986390346 @default.
- W1989076763 hasRelatedWork W2088242343 @default.
- W1989076763 hasRelatedWork W2132903243 @default.
- W1989076763 hasRelatedWork W2355371556 @default.
- W1989076763 hasRelatedWork W2387143655 @default.
- W1989076763 hasRelatedWork W3121668058 @default.
- W1989076763 hasRelatedWork W3123419490 @default.
- W1989076763 hasRelatedWork W3211808700 @default.
- W1989076763 hasRelatedWork W4253317242 @default.
- W1989076763 hasVolume "E98.D" @default.
- W1989076763 isParatext "false" @default.
- W1989076763 isRetracted "false" @default.
- W1989076763 magId "1989076763" @default.