Matches in SemOpenAlex for { <https://semopenalex.org/work/W1989201701> ?p ?o ?g. }
- W1989201701 endingPage "167" @default.
- W1989201701 startingPage "154" @default.
- W1989201701 abstract "The fractionation of stable Li isotopes (6Li, 7Li) has become a promising proxy for assessing changes related to continental silicate weathering patterns. Recently, the first complete record of Cenozoic seawater Li isotopic composition (δ7Li) was reported (Misra and Froelich, 2012, Science 335, 818–821) showing a stepwise increase of + 9‰ over the last 56 Ma. This increase was attributed to a general change in continental silicate weathering behavior caused by tectonic uplift. In particular, the low global average riverine δ7Li inferred for the Paleocene–Eocene boundary was explained by congruent silicate weathering of primary silicate minerals, which is inconsistent with the stoichiometry of secondary minerals and the resultant water chemistry. In this study, we present a novel reactive transport modeling approach that explicitly includes Li isotopic fractionation to assess alternative geochemically-constrained interpretations that do not rely on congruent weathering. Simulations show that riverine δ7Li is mainly controlled by the subsurface residence time, the corresponding weathering intensity, and the concentration of a river's suspended load. Based on these factors, we suspect that the low δ7Li observed at the Paleocene–Eocene boundary was inherited from a high weathering intensity with predominant weathering of previously formed secondary mineral phases (e.g., clays, oxides) having low δ7Li values. Moreover, we conclude that the Cenozoic δ7Li increase was caused by an increasing amount of primary silicate mineral dissolution inherited from an increasing suspended river load concentration and a decreasing weathering intensity both likely induced by tectonic uplift. In contrast, Cenozoic cooling and corresponding pCO2 and precipitation variations do not seem to have a distinct control on the Cenozoic δ7Li record. Finally, our simulations revealed a close relation between δ7Li and CO2 consumption by silicate weathering implying that the Cenozoic seawater δ7Li record could be potentially used to quantify such CO2 consumption through time. However, more experimental and modeling work is required to quantify the correlation between seawater δ7Li and global CO2 consumption by silicate weathering. Key parameters are the temperature-dependent thermodynamic properties of specific Li-bearing primary and secondary minerals (e.g., crystallographic Li substitution reaction, maximum Li substitution, Li solubility, Li isotopic fractionation factor) as well as the determination of global average subsurface and river discharges through time." @default.
- W1989201701 created "2016-06-24" @default.
- W1989201701 creator A5025368804 @default.
- W1989201701 creator A5049075261 @default.
- W1989201701 creator A5073764664 @default.
- W1989201701 date "2014-08-01" @default.
- W1989201701 modified "2023-10-06" @default.
- W1989201701 title "Seawater δ7Li: A direct proxy for global CO2 consumption by continental silicate weathering?" @default.
- W1989201701 cites W1645311784 @default.
- W1989201701 cites W1965840594 @default.
- W1989201701 cites W1966391672 @default.
- W1989201701 cites W1967941388 @default.
- W1989201701 cites W1970336648 @default.
- W1989201701 cites W1971008779 @default.
- W1989201701 cites W1971461287 @default.
- W1989201701 cites W1971678316 @default.
- W1989201701 cites W1974904677 @default.
- W1989201701 cites W1975452494 @default.
- W1989201701 cites W1983344605 @default.
- W1989201701 cites W1984117161 @default.
- W1989201701 cites W1987278699 @default.
- W1989201701 cites W1989167434 @default.
- W1989201701 cites W1990749591 @default.
- W1989201701 cites W1993774943 @default.
- W1989201701 cites W1999924690 @default.
- W1989201701 cites W2002673413 @default.
- W1989201701 cites W2003848469 @default.
- W1989201701 cites W2004159944 @default.
- W1989201701 cites W2006763297 @default.
- W1989201701 cites W2008587428 @default.
- W1989201701 cites W2008604385 @default.
- W1989201701 cites W2009073634 @default.
- W1989201701 cites W2012692338 @default.
- W1989201701 cites W2015604853 @default.
- W1989201701 cites W2016675475 @default.
- W1989201701 cites W2023652180 @default.
- W1989201701 cites W2029401070 @default.
- W1989201701 cites W2030929256 @default.
- W1989201701 cites W2032073117 @default.
- W1989201701 cites W2032187872 @default.
- W1989201701 cites W2034326251 @default.
- W1989201701 cites W2037903089 @default.
- W1989201701 cites W2041158780 @default.
- W1989201701 cites W2047476280 @default.
- W1989201701 cites W2050577824 @default.
- W1989201701 cites W2052406241 @default.
- W1989201701 cites W2052732948 @default.
- W1989201701 cites W2053627401 @default.
- W1989201701 cites W2060349907 @default.
- W1989201701 cites W2060620988 @default.
- W1989201701 cites W2063574244 @default.
- W1989201701 cites W2064313765 @default.
- W1989201701 cites W2064936859 @default.
- W1989201701 cites W2067486513 @default.
- W1989201701 cites W2069838910 @default.
- W1989201701 cites W2078916507 @default.
- W1989201701 cites W2079118724 @default.
- W1989201701 cites W2082203859 @default.
- W1989201701 cites W2084280680 @default.
- W1989201701 cites W2084825481 @default.
- W1989201701 cites W2084849445 @default.
- W1989201701 cites W2095976142 @default.
- W1989201701 cites W2107127140 @default.
- W1989201701 cites W2109261160 @default.
- W1989201701 cites W2111473359 @default.
- W1989201701 cites W2114534028 @default.
- W1989201701 cites W2116564966 @default.
- W1989201701 cites W2118628706 @default.
- W1989201701 cites W2143353107 @default.
- W1989201701 cites W2158909637 @default.
- W1989201701 cites W2159371299 @default.
- W1989201701 cites W2162844450 @default.
- W1989201701 cites W2168788553 @default.
- W1989201701 cites W2316463087 @default.
- W1989201701 cites W4244033490 @default.
- W1989201701 cites W4245300726 @default.
- W1989201701 doi "https://doi.org/10.1016/j.chemgeo.2014.05.005" @default.
- W1989201701 hasPublicationYear "2014" @default.
- W1989201701 type Work @default.
- W1989201701 sameAs 1989201701 @default.
- W1989201701 citedByCount "76" @default.
- W1989201701 countsByYear W19892017012014 @default.
- W1989201701 countsByYear W19892017012015 @default.
- W1989201701 countsByYear W19892017012016 @default.
- W1989201701 countsByYear W19892017012017 @default.
- W1989201701 countsByYear W19892017012018 @default.
- W1989201701 countsByYear W19892017012019 @default.
- W1989201701 countsByYear W19892017012020 @default.
- W1989201701 countsByYear W19892017012021 @default.
- W1989201701 countsByYear W19892017012022 @default.
- W1989201701 countsByYear W19892017012023 @default.
- W1989201701 crossrefType "journal-article" @default.
- W1989201701 hasAuthorship W1989201701A5025368804 @default.
- W1989201701 hasAuthorship W1989201701A5049075261 @default.
- W1989201701 hasAuthorship W1989201701A5073764664 @default.
- W1989201701 hasBestOaLocation W19892017012 @default.
- W1989201701 hasConcept C109007969 @default.
- W1989201701 hasConcept C111368507 @default.