Matches in SemOpenAlex for { <https://semopenalex.org/work/W1989758052> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W1989758052 endingPage "1232" @default.
- W1989758052 startingPage "1220" @default.
- W1989758052 abstract "Objective: To propose a noise reduction procedure for magnetoencephalography (MEG) signals introducing an automatic detection system of artifactual components (ICs) separated by an independent component analysis (ICA) algorithm, and a control cycle on reconstructed cleaned data to recovery part of non-artifactual signals possibly lost by the blind mechanism. Methods: The procedure consisted of three main steps: (1) ICA for blind source separation (BSS); (2) automatic detection method of artifactual components, based on statistical and spectral ICs characteristics; (3) control cycle on ‘discrepancy,’ i.e. on the difference between original data and those reconstructed using only ICs automatically retained. Simulated data were generated as representative mixtures of some common brain frequencies, a source of internal Gaussian noise, power line interference, and two real artifacts (electrocardiogram=ECG, electrooculogram=EOG), with the adjunction of a matrix of Gaussian external noise. Three real data samples were chosen as representative of spontaneous noisy MEG data. Results: In simulated data the proposed set of markers selected three components corresponding to ECG, EOG and the Gaussian internal noise; in real-data examples, the automatic detection system showed a satisfactory performance in detecting artifactual ICs. ‘Discrepancy’ control cycle was redundant in simulated data, as expected, but it was a significant amelioration in two of the three real-data cases. Conclusions: The proposed automatic detection approach represents a suitable strengthening and simplification of pre-processing data analyses. The proposed ‘discrepancy’ evaluation, after automatic pruning, seems to be a suitable way to render negligible the risk of loose non-artifactual activity when applying BSS methods to real data. Significance: The present noise reduction procedure, including ICA separation phase, automatic artifactual ICs selection and ‘discrepancy’ control cycle, showed good performances both on simulated and real MEG data. Moreover, application to real signals suggests the procedure to be able to separate different cerebral activity sources, even if characterized by very similar frequency contents." @default.
- W1989758052 created "2016-06-24" @default.
- W1989758052 creator A5011146128 @default.
- W1989758052 creator A5014966655 @default.
- W1989758052 creator A5021612333 @default.
- W1989758052 creator A5035394476 @default.
- W1989758052 creator A5047252819 @default.
- W1989758052 date "2004-05-01" @default.
- W1989758052 modified "2023-10-16" @default.
- W1989758052 title "Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals" @default.
- W1989758052 cites W1965367308 @default.
- W1989758052 cites W1978386551 @default.
- W1989758052 cites W1984441060 @default.
- W1989758052 cites W2005314924 @default.
- W1989758052 cites W2042399491 @default.
- W1989758052 cites W2055439724 @default.
- W1989758052 cites W2065642262 @default.
- W1989758052 cites W2072005124 @default.
- W1989758052 cites W2092145965 @default.
- W1989758052 cites W2092424368 @default.
- W1989758052 cites W2141330748 @default.
- W1989758052 cites W2146750794 @default.
- W1989758052 cites W2147955712 @default.
- W1989758052 cites W2151544690 @default.
- W1989758052 doi "https://doi.org/10.1016/j.clinph.2003.12.015" @default.
- W1989758052 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15066548" @default.
- W1989758052 hasPublicationYear "2004" @default.
- W1989758052 type Work @default.
- W1989758052 sameAs 1989758052 @default.
- W1989758052 citedByCount "255" @default.
- W1989758052 countsByYear W19897580522012 @default.
- W1989758052 countsByYear W19897580522013 @default.
- W1989758052 countsByYear W19897580522014 @default.
- W1989758052 countsByYear W19897580522015 @default.
- W1989758052 countsByYear W19897580522016 @default.
- W1989758052 countsByYear W19897580522017 @default.
- W1989758052 countsByYear W19897580522018 @default.
- W1989758052 countsByYear W19897580522019 @default.
- W1989758052 countsByYear W19897580522020 @default.
- W1989758052 countsByYear W19897580522021 @default.
- W1989758052 countsByYear W19897580522022 @default.
- W1989758052 countsByYear W19897580522023 @default.
- W1989758052 crossrefType "journal-article" @default.
- W1989758052 hasAuthorship W1989758052A5011146128 @default.
- W1989758052 hasAuthorship W1989758052A5014966655 @default.
- W1989758052 hasAuthorship W1989758052A5021612333 @default.
- W1989758052 hasAuthorship W1989758052A5035394476 @default.
- W1989758052 hasAuthorship W1989758052A5047252819 @default.
- W1989758052 hasConcept C115961682 @default.
- W1989758052 hasConcept C118552586 @default.
- W1989758052 hasConcept C120317606 @default.
- W1989758052 hasConcept C127162648 @default.
- W1989758052 hasConcept C153180895 @default.
- W1989758052 hasConcept C154945302 @default.
- W1989758052 hasConcept C15744967 @default.
- W1989758052 hasConcept C2779010991 @default.
- W1989758052 hasConcept C31258907 @default.
- W1989758052 hasConcept C41008148 @default.
- W1989758052 hasConcept C51432778 @default.
- W1989758052 hasConcept C522805319 @default.
- W1989758052 hasConcept C556910895 @default.
- W1989758052 hasConcept C99498987 @default.
- W1989758052 hasConceptScore W1989758052C115961682 @default.
- W1989758052 hasConceptScore W1989758052C118552586 @default.
- W1989758052 hasConceptScore W1989758052C120317606 @default.
- W1989758052 hasConceptScore W1989758052C127162648 @default.
- W1989758052 hasConceptScore W1989758052C153180895 @default.
- W1989758052 hasConceptScore W1989758052C154945302 @default.
- W1989758052 hasConceptScore W1989758052C15744967 @default.
- W1989758052 hasConceptScore W1989758052C2779010991 @default.
- W1989758052 hasConceptScore W1989758052C31258907 @default.
- W1989758052 hasConceptScore W1989758052C41008148 @default.
- W1989758052 hasConceptScore W1989758052C51432778 @default.
- W1989758052 hasConceptScore W1989758052C522805319 @default.
- W1989758052 hasConceptScore W1989758052C556910895 @default.
- W1989758052 hasConceptScore W1989758052C99498987 @default.
- W1989758052 hasIssue "5" @default.
- W1989758052 hasLocation W19897580521 @default.
- W1989758052 hasLocation W19897580522 @default.
- W1989758052 hasOpenAccess W1989758052 @default.
- W1989758052 hasPrimaryLocation W19897580521 @default.
- W1989758052 hasRelatedWork W2046761971 @default.
- W1989758052 hasRelatedWork W2103029460 @default.
- W1989758052 hasRelatedWork W2156932837 @default.
- W1989758052 hasRelatedWork W2358904271 @default.
- W1989758052 hasRelatedWork W2361066326 @default.
- W1989758052 hasRelatedWork W2364896863 @default.
- W1989758052 hasRelatedWork W2380698615 @default.
- W1989758052 hasRelatedWork W2390344110 @default.
- W1989758052 hasRelatedWork W374502268 @default.
- W1989758052 hasRelatedWork W2182042810 @default.
- W1989758052 hasVolume "115" @default.
- W1989758052 isParatext "false" @default.
- W1989758052 isRetracted "false" @default.
- W1989758052 magId "1989758052" @default.
- W1989758052 workType "article" @default.