Matches in SemOpenAlex for { <https://semopenalex.org/work/W1989768265> ?p ?o ?g. }
- W1989768265 endingPage "226" @default.
- W1989768265 startingPage "218" @default.
- W1989768265 abstract "Like non-metallic glasses, many bulk metallic glasses manifest a glass-transition temperature Tg during heating prior to crystallisation. While the exact nature of the atomic structure of a metallic glass depends on its thermo-mechanical history (quench-rate, plastic deformation, …), a unique and reproducible average atomic structure is attained if the glass transition temperature can be approached in a reversible manner. However, a metallic glass is always metastable and crystallises within a time t near or above its Tg in such a way that any reciprocal or real-space information on the fully glassy state at T⩾Tg must be completed within acquisition times τa≪t and this condition is in general difficult to attain with conventional X-ray diffraction devices. Here we report on experiments using high-energy, high-flux synchrotron light in the transmission for probing of the atomic structure of bulk metallic glasses. Examples are given of the determination of the isochoric glass transition Tg and the quenched-in free-volume. Finally, we report on the evolution of the atomic structure in the supercooled liquid region (T>Tg) and its role in the enhancement of glass formability. Comme les verres classiques, de nombreux verres métalliques massifs manifestent une température de transition vitreuse Tg au cours du chauffage avant de se cristalliser. Si la nature exacte de la structure atomique dʼun verre métallique dépend de son histoire thermo-mécanique (vitesse de trempe, la déformation plastique, …), une unique et reproductible structure atomique moyenne est atteinte si la température de transition vitreuse peut être approchée de manière réversible. Toutefois, un verre métallique est toujours métastable et se cristallise dans un temps, t, au voisinage ou au-dessus de sa Tg de telle manière que toute lʼinformation dans les espaces réciproque et réel sur lʼétat totalement vitreux à T⩾Tg doit être obtenue dans des temps dʼacquisition τa≪t et cette condition est en général difficile à atteindre avec les dispositifs classiques de diffraction des rayons-X. Nous rapportons ici les expériences de diffraction de la lumière synchrotron de haute énergie en transmission pour sonder la structure atomique de verres métalliques massifs. Des exemples sont donnés de la détermination de la transition vitreuse isochore Tg, la mesure du volume-libre dʼexcès piégé par la trempe. Nous présentons également lʼévolution de la structure atomique dans la région du liquide sous-refroidi (T>Tg) et son rôle dans lʼamélioration de la formabilité des verres métalliques." @default.
- W1989768265 created "2016-06-24" @default.
- W1989768265 creator A5014715353 @default.
- W1989768265 creator A5035795649 @default.
- W1989768265 creator A5061382452 @default.
- W1989768265 creator A5077212961 @default.
- W1989768265 creator A5085688288 @default.
- W1989768265 date "2012-04-01" @default.
- W1989768265 modified "2023-10-12" @default.
- W1989768265 title "Atomic structure of bulk metallic glasses and their supercooled liquid states probed by high-energy synchrotron light" @default.
- W1989768265 cites W1964213229 @default.
- W1989768265 cites W1965157313 @default.
- W1989768265 cites W1965295398 @default.
- W1989768265 cites W1966948491 @default.
- W1989768265 cites W1968359288 @default.
- W1989768265 cites W1972013744 @default.
- W1989768265 cites W1972688117 @default.
- W1989768265 cites W1974129058 @default.
- W1989768265 cites W1976474711 @default.
- W1989768265 cites W1976577005 @default.
- W1989768265 cites W1993002247 @default.
- W1989768265 cites W1993334777 @default.
- W1989768265 cites W1996016803 @default.
- W1989768265 cites W1998706933 @default.
- W1989768265 cites W1999987710 @default.
- W1989768265 cites W2001746858 @default.
- W1989768265 cites W2006651850 @default.
- W1989768265 cites W2009645752 @default.
- W1989768265 cites W2009770013 @default.
- W1989768265 cites W2010915334 @default.
- W1989768265 cites W2011240043 @default.
- W1989768265 cites W2012756845 @default.
- W1989768265 cites W2022452412 @default.
- W1989768265 cites W2025317846 @default.
- W1989768265 cites W2026750407 @default.
- W1989768265 cites W2031874471 @default.
- W1989768265 cites W2035689141 @default.
- W1989768265 cites W2037876054 @default.
- W1989768265 cites W2039971369 @default.
- W1989768265 cites W2043339871 @default.
- W1989768265 cites W2054127827 @default.
- W1989768265 cites W2054265141 @default.
- W1989768265 cites W2061183940 @default.
- W1989768265 cites W2061483421 @default.
- W1989768265 cites W2061980986 @default.
- W1989768265 cites W2081522682 @default.
- W1989768265 cites W2082355009 @default.
- W1989768265 cites W2085667344 @default.
- W1989768265 cites W2086898722 @default.
- W1989768265 cites W2092422144 @default.
- W1989768265 cites W2093157284 @default.
- W1989768265 cites W2093873990 @default.
- W1989768265 cites W2111237180 @default.
- W1989768265 cites W2137841785 @default.
- W1989768265 cites W2164666129 @default.
- W1989768265 cites W2166331870 @default.
- W1989768265 cites W2170642434 @default.
- W1989768265 cites W2332071915 @default.
- W1989768265 cites W2400325723 @default.
- W1989768265 doi "https://doi.org/10.1016/j.crhy.2011.12.010" @default.
- W1989768265 hasPublicationYear "2012" @default.
- W1989768265 type Work @default.
- W1989768265 sameAs 1989768265 @default.
- W1989768265 citedByCount "3" @default.
- W1989768265 countsByYear W19897682652012 @default.
- W1989768265 countsByYear W19897682652015 @default.
- W1989768265 countsByYear W19897682652022 @default.
- W1989768265 crossrefType "journal-article" @default.
- W1989768265 hasAuthorship W1989768265A5014715353 @default.
- W1989768265 hasAuthorship W1989768265A5035795649 @default.
- W1989768265 hasAuthorship W1989768265A5061382452 @default.
- W1989768265 hasAuthorship W1989768265A5077212961 @default.
- W1989768265 hasAuthorship W1989768265A5085688288 @default.
- W1989768265 hasBestOaLocation W19897682654 @default.
- W1989768265 hasConcept C112964491 @default.
- W1989768265 hasConcept C121332964 @default.
- W1989768265 hasConcept C122865956 @default.
- W1989768265 hasConcept C123266363 @default.
- W1989768265 hasConcept C159985019 @default.
- W1989768265 hasConcept C178790620 @default.
- W1989768265 hasConcept C185592680 @default.
- W1989768265 hasConcept C192562407 @default.
- W1989768265 hasConcept C2780026712 @default.
- W1989768265 hasConcept C521977710 @default.
- W1989768265 hasConcept C89464430 @default.
- W1989768265 hasConcept C97355855 @default.
- W1989768265 hasConceptScore W1989768265C112964491 @default.
- W1989768265 hasConceptScore W1989768265C121332964 @default.
- W1989768265 hasConceptScore W1989768265C122865956 @default.
- W1989768265 hasConceptScore W1989768265C123266363 @default.
- W1989768265 hasConceptScore W1989768265C159985019 @default.
- W1989768265 hasConceptScore W1989768265C178790620 @default.
- W1989768265 hasConceptScore W1989768265C185592680 @default.
- W1989768265 hasConceptScore W1989768265C192562407 @default.
- W1989768265 hasConceptScore W1989768265C2780026712 @default.
- W1989768265 hasConceptScore W1989768265C521977710 @default.
- W1989768265 hasConceptScore W1989768265C89464430 @default.
- W1989768265 hasConceptScore W1989768265C97355855 @default.