Matches in SemOpenAlex for { <https://semopenalex.org/work/W1989810637> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W1989810637 endingPage "1289" @default.
- W1989810637 startingPage "1257" @default.
- W1989810637 abstract "This paper addresses a solution of simultaneous localization and mapping (SLAM) for sonar readings based on neuro-evolutionary optimization algorithm. In the past two decades, numerous studies have attempted to solve the SLAM problem using laser scanners and vision sensors. However, relatively little research has been carried out on a sonar-based SLAM algorithm, because the bearing accuracy and resolution of sonars are not enough to find consistent features for SLAM. The proposed algorithm in this paper solves the sonar-based SLAM as a global optimization problem using the cost function that represents the quality of a robot's trajectory in the world coordinate frame. In our algorithm, a neural network helps to estimate the robot's pose error accurately using sonar inputs at each position and the pose difference between two consecutive robot poses, and evolutionary programming is used to find the most suitable neural network. By way of learning and evolution, our algorithm does not need a prior assumption on the motion and sensor models, and therefore shows a robust performance regardless of the actual noise type. Our neural network-based SLAM algorithm is applied to a robot that has sonar sensors. The various experimental results demonstrate that the neural network-based SLAM guarantees a consistent environmental map under sonar readings that in general are known to have poor bearing accuracy and resolution." @default.
- W1989810637 created "2016-06-24" @default.
- W1989810637 creator A5032941776 @default.
- W1989810637 creator A5039059967 @default.
- W1989810637 creator A5084489338 @default.
- W1989810637 creator A5089713895 @default.
- W1989810637 date "2010-01-01" @default.
- W1989810637 modified "2023-09-23" @default.
- W1989810637 title "Sonar-Based Simultaneous Localization and Mapping Using a Neuro-Evolutionary Optimization" @default.
- W1989810637 cites W1587866709 @default.
- W1989810637 cites W2013097588 @default.
- W1989810637 cites W2067250467 @default.
- W1989810637 cites W2070669127 @default.
- W1989810637 cites W2079511563 @default.
- W1989810637 cites W2097468198 @default.
- W1989810637 cites W2105603388 @default.
- W1989810637 cites W2109513571 @default.
- W1989810637 cites W2112719241 @default.
- W1989810637 cites W2113055091 @default.
- W1989810637 cites W2115990511 @default.
- W1989810637 cites W2116191958 @default.
- W1989810637 cites W2143864104 @default.
- W1989810637 cites W2146123848 @default.
- W1989810637 cites W2151103935 @default.
- W1989810637 cites W2152671441 @default.
- W1989810637 cites W2164401819 @default.
- W1989810637 doi "https://doi.org/10.1163/016918610x501435" @default.
- W1989810637 hasPublicationYear "2010" @default.
- W1989810637 type Work @default.
- W1989810637 sameAs 1989810637 @default.
- W1989810637 citedByCount "4" @default.
- W1989810637 countsByYear W19898106372012 @default.
- W1989810637 countsByYear W19898106372013 @default.
- W1989810637 countsByYear W19898106372017 @default.
- W1989810637 crossrefType "journal-article" @default.
- W1989810637 hasAuthorship W1989810637A5032941776 @default.
- W1989810637 hasAuthorship W1989810637A5039059967 @default.
- W1989810637 hasAuthorship W1989810637A5084489338 @default.
- W1989810637 hasAuthorship W1989810637A5089713895 @default.
- W1989810637 hasConcept C115961682 @default.
- W1989810637 hasConcept C154945302 @default.
- W1989810637 hasConcept C19966478 @default.
- W1989810637 hasConcept C31972630 @default.
- W1989810637 hasConcept C41008148 @default.
- W1989810637 hasConcept C50644808 @default.
- W1989810637 hasConcept C555745239 @default.
- W1989810637 hasConcept C86369673 @default.
- W1989810637 hasConcept C90509273 @default.
- W1989810637 hasConcept C99498987 @default.
- W1989810637 hasConceptScore W1989810637C115961682 @default.
- W1989810637 hasConceptScore W1989810637C154945302 @default.
- W1989810637 hasConceptScore W1989810637C19966478 @default.
- W1989810637 hasConceptScore W1989810637C31972630 @default.
- W1989810637 hasConceptScore W1989810637C41008148 @default.
- W1989810637 hasConceptScore W1989810637C50644808 @default.
- W1989810637 hasConceptScore W1989810637C555745239 @default.
- W1989810637 hasConceptScore W1989810637C86369673 @default.
- W1989810637 hasConceptScore W1989810637C90509273 @default.
- W1989810637 hasConceptScore W1989810637C99498987 @default.
- W1989810637 hasIssue "8-9" @default.
- W1989810637 hasLocation W19898106371 @default.
- W1989810637 hasOpenAccess W1989810637 @default.
- W1989810637 hasPrimaryLocation W19898106371 @default.
- W1989810637 hasRelatedWork W2006288243 @default.
- W1989810637 hasRelatedWork W2058063222 @default.
- W1989810637 hasRelatedWork W2107952443 @default.
- W1989810637 hasRelatedWork W2116298349 @default.
- W1989810637 hasRelatedWork W2117368668 @default.
- W1989810637 hasRelatedWork W2134864252 @default.
- W1989810637 hasRelatedWork W2163622079 @default.
- W1989810637 hasRelatedWork W2734306012 @default.
- W1989810637 hasRelatedWork W2737953495 @default.
- W1989810637 hasRelatedWork W4206483957 @default.
- W1989810637 hasVolume "24" @default.
- W1989810637 isParatext "false" @default.
- W1989810637 isRetracted "false" @default.
- W1989810637 magId "1989810637" @default.
- W1989810637 workType "article" @default.